Hey there, I hope I can be of assistance today!
While there are
no graphs, I can provide you with the graph to answer your question assuming you have choices of graphs!
Hope this helps!
You need to add up all the sides of the thing thank you
Answer:
0.1319 or 13.2%
Step-by-step explanation:
You can solve this using the binomial probability formula.
The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.
Then, we can set the equation as follows:
P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k)
n=4, x=2, k=2
when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157
when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154
when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008
Add them up, and you should get 0.1319 or 13.2% (rounded to the nearest tenth)
Answer:
Midpoint formula.
The midpoint formula is (x_1+x_2)/2 , (y_1+y_2)/2
Step-by-step explanation:
This is one method. A list wasn't provided.
Answer:
4p^3 (4p + 1)
Step-by-step explanation:
All we can do with this equation is factor it.
16p^4 + 4p^3
When we look at the coefficients, there is a common factor of 4 with 16 and 4. The p's are also common factors, and we can take out a common factor of x^3. We can combine these common factors and take them out of the equation at the same time.
4p^3 (4p + 1)