The answer is B. good luck :)
Answer:
(a) 1.85 m/s
(b) 4.1 m/s
Explanation:
Data
- initial bullet velocity, Vbi = 837 m/s
- wooden block mass, Mw = 820 g
- initial wooden block velocity, Vwi = 0 m/s
- final bullet velocity, Vbf = 467 m/s
(a) From the conservation of momentum:
Mb*Vbi + Mw*Vwi = Mb*Vbf + Mw*Vwf
Mb*(Vbi - Vbf)/Mw = Vwf
4.1*(837 - 467)/820 = Vwf
Vwf = 1.85 m/s
(b) The speed of the center of mass speed is calculated as follows:
V = Mb/(Mb + Mw) * Vbi
V = 4.1/(4.1 + 820) * 837
V = 4.1 m/s
Now the vertical velocity of the ball thrown at an angle 10° is given as
Voy(initial vertical velocity)= 30m/s x sin 10
Voy(initial vertical velocity)= 5.2m/s
Now the ball is decelerating with an acceleration due to gravity equivalent to 9.8m/s^2.
Let Vy be the final velocity and that is equal to zero in this case.
Now
Vy= Voy- tx9.8
Where t is the time at which the vertical velocity becomes 0.
Substituting the values we get
0= 5.2-tx9.8
9.8t=5.2
t=0.53 secs
<span>U could compare them using the intensity
technique when bending waves are negligible in comparison with
quasi-longitudinal waves.</span>
Answer:
26280
Explanation:
In current time, good telescope can measure redshift to a galaxy in 10 minutes.
Thus, in one year that has on an average 365 days, the total time taken to measure redshifts is = ( 365 *12 *60) minute
= 262800 minutes .
Hence, the number of redshifts observed in a year = (262800/10) = 26280