He goes 24 miles. hope this helps!
Given:
distance from the projector lens to the image, di
projector lens focal length, f
distance from the transparency to the projector lens, do
thin lens equation: 1/f = 1/di + 1/do
do = 4 inches
di = 8 feet
convert feet to inches, for uniformity.
1 foot = 12 inches
8 feet * 12 inches/ft = 96 inches
1/f = 1/96 inches + 1/4 inches
Adding fractions, denominator must be the same.
1/f = (1/96 * 1/1) + (1/4 * 24/24)
1/f = 1/96 + 24/96
1/f = 25/96
to find the value of f, do cross multiplication
1*96 = f * 25
96 = 25f
96/25 = f
3.84 = f
The focal length of the project lens is 3.84 inches
Sound and water waves are longitudinal waves, they require a medium to travel through and occilate particles 90 degrees to the wave motion
Light is a transverse wave. It doesnt require a medium to travel through.
All three reflect, refract and diffract
Light is difficult to think of because it acts in ways which waves cannot explain in some cirumstances. It acts like a particle (called photons) in some conditions, but acts like a normal sound or water wave does in others. Try not to get too caught up in light being a wave or a particle because even physists dont know how to explain it yet.
The energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.
<h3>Change in energy level of the electron</h3>
When photons jump from a higher energy level to a lower level, they emit or radiate energy.
The change in energy level of the electrons is calculated as follows;
ΔE = Eb - Ef
ΔE = -2.68 eV - (-5.74 eV)
ΔE = 3.06 eV
Thus, the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.
Learn more about energy level here: brainly.com/question/14287666
#SPJ1