Answer:
smallest number :14,18,28 29,32
largest number :65,50,48,44,32
Answer:
Step-x ≤ 3
Given
2(4 + 2x) ≥ 5x + 5 ← distribute parenthesis on left side
8 + 4x ≥ 5x + 5 ( subtract 4x from both sides )
8 ≥ x + 5 ( subtract 5 from both sides )
3 ≥ x , hence
x ≤ 3by-step explanation:
The correct answers are :
(5x)² ≥ 46
x² + 5x ≤ 46
5x² > 46
<h3>
What is Inequalities?</h3>
A statement of an order relationship—greater than, greater than or equal to, less than, or less than or equal to—between two numbers or algebraic expressions.
Here, Suppose number is x
1) The square of the product of 5 and a number is not less than 46.
Step 1
Product of 5
5x
Step 2
Square of product of 5
(5x)²
Step 3
A number is not less than 46
(5x)² ≥ 46
2) The sum of square of a number and five times that number is not more than 46
Step 1
Square of a number
x²
Step 2
Five times that number
5x
Step 3
The sum = x² + 5x
Step 4
Is not more than 46
x² + 5x ≤ 46
3) The product of 5 and the square of a number is greater than 46
Step 1
The square of a number
x²
Step 2
The product of 5
5x²
Step 3
Is greater than 46
5x² > 46
Thus, The correct answers are :
(5x)² ≥ 46
x² + 5x ≤ 46
5x² > 46
Learn more about Inequality from:
brainly.com/question/20383699
#SPJ1
Step-by-step explanation:
<em>the </em><em>giv</em><em>e</em><em>n </em><em>pair </em><em>is </em><em>Alternate</em><em> Exterior</em><em> Angle</em>
<em>so </em><em>their </em><em>values </em><em>are </em><em>equal </em><em>so,</em>
<em>→</em><em> </em><em>2</em><em>x</em><em> </em><em>+</em><em> </em><em>2</em><em>6</em><em> </em><em>=</em><em> </em><em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>3</em><em>3</em>
<em>→</em><em> </em><em>2</em><em>x</em><em> </em><em>-</em><em> </em><em>3</em><em>x</em><em> </em><em>=</em><em> </em><em>-</em><em>3</em><em>3</em><em> </em><em>-</em><em> </em><em>2</em><em>6</em>
<em>→</em><em> </em><em>x </em><em>=</em><em> </em><em>5</em><em>9</em>
<em>therefore</em><em> </em><em>option</em><em> </em><em>C </em><em>is </em><em>correct</em>
<em><u>hope </u></em><em><u>this </u></em><em><u>answer </u></em><em><u>helps </u></em><em><u>you </u></em><em><u>dear.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care </u></em><em><u>and </u></em><em><u>may </u></em><em><u>u </u></em><em><u>have </u></em><em><u>a </u></em><em><u>great </u></em><em><u>day </u></em><em><u>ahead</u></em><em><u>!</u></em>