1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
omeli [17]
3 years ago
9

Can some one help pls

Mathematics
2 answers:
arlik [135]3 years ago
8 0

Answer: <DEF & <JKL

Step-by-step explanation:

they equal 90 degrees

complementary angles equal 90 degrees

Inga [223]3 years ago
8 0

Answer:

<h2><u>DEF and JKL</u></h2>

Step-by-step explanation:

A complementary angle is two angles that add up to 90°. If you try to add up any of the angles, only answer C. will be true

You might be interested in
Finish the lyric and name the song and artist (For fun)
nirvana33 [79]
“Only want people around that's gonna make me better”
3 0
3 years ago
Read 2 more answers
3/8d+3/4 factor out coefficient
Orlov [11]
Coefficient is a number next to the variable so the coefficient of this expression is 3/8
5 0
3 years ago
At what value of x do the graphs of the equations below intersect?
Zarrin [17]

Answer:

x = 2

Step-by-step explanation:

  1. You would find a value of y to plug into either of the equations. For example, I chose the equation 2x - y = 6. When I set it equal to y, I got y = 2x - 6
  2. Now that I know what y is equal to, I plugged it into the second equation to get 5x + 10 (2x - 6) = -10
  3. You then would calculate for x.
  4. Your end result should be x = 2, which is the point that the two equations intersect

This works because the two equations are set equal to each other, making them share a common value between them.

You can also plug both of these equations into a graphing calculator, and on the graph select the command to calculate the intersection.

Hope this helped!

8 0
3 years ago
Read 2 more answers
How many terms are in the expression x2 - 10xy + 3y + y2 - 1
Hatshy [7]
There a five terms in this problem.
7 0
3 years ago
To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assig
Keith_Richards [23]

Answer:

1. Null hypothesis: \mu_{A}=\mu_{B}=\mu_{C}

Alternative hypothesis: Not all the means are equal \mu_{i}\neq \mu_{j}, i,j=A,B,C

2. D. 36

3. C. 34

4. B. 1.059

5. B. 8.02

Step-by-step explanation:

Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".

The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"

Part 1

The hypothesis for this case are:

Null hypothesis: \mu_{A}=\mu_{B}=\mu_{C}

Alternative hypothesis: Not all the means are equal \mu_{i}\neq \mu_{j}, i,j=A,B,C

Part 2

In order to find the mean square between treatments (MSTR), we need to find first the sum of squares and the degrees of freedom.

If we assume that we have p groups and on each group from j=1,\dots,p we have n_j individuals on each group we can define the following formulas of variation:  

SS_{total}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x)^2

SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2

SS_{within}=SS_{error}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x_j)^2

And we have this property

SST=SS_{between}+SS_{within}

We need to find the mean for each group first and the grand mean.

\bar X =\frac{\sum_{i=1}^n x_i}{n}

If we apply the before formula we can find the mean for each group

\bar X_A = 27, \bar X_B = 24, \bar X_C = 30. And the grand mean \bar X = 27

Now we can find the sum of squares between:

SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2

Each group have a sample size of 4 so then n_j =4

SS_{between}=SS_{model}=4(27-27)^2 +4(24-27)^2 +4(30-27)^2=72

The degrees of freedom for the variation Between is given by df_{between}=k-1=3-1=2, Where  k the number of groups k=3.

Now we can find the mean square between treatments (MSTR) we just need to use this formula:

MSTR=\frac{SS_{between}}{k-1}=\frac{72}{2}=36

D. 36

Part 3

For the mean square within treatments value first we need to find the sum of squares within and the degrees of freedom.

SS_{within}=SS_{error}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x_j)^2

SS_{error}=(20-27)^2 +(30-27)^2 +(25-27)^2 +(33-27)^2 +(22-24)^2 +(26-24)^2 +(20-24)^2 +(28-24)^2 +(40-30)^2 +(30-30)^2 +(28-30)^2 +(22-30)^2 =306

And the degrees of freedom are given by:

df_{within}=N-k =3*4 -3 = 12-3=9. N represent the total number of individuals we have 3 groups each one with a size of 4 individuals. And k the number of groups k=3.

And now we can find the mean square within treatments:

MSE=\frac{SS_{within}}{N-k}=\frac{306}{9}=34

C. 34

Part 4

The test statistic F is given by this formula:

F=\frac{MSTR}{MSE}=\frac{36}{34}=1.059

B. 1.059

Part 5

The critical value is from a F distribution with degrees of freedom in the numerator of 2 and on the denominator of 9 such that we have 0.01 of the area in the distribution on the right.

And we can use excel to find this critical value with this function:

"=F.INV(1-0.01,2,9)"

And we will see that the critical value is F_{crit}=8.02

B. 8.02

5 0
3 years ago
Other questions:
  • (2 1/2)× -8=what is 2 1/2 * -8 equal to
    14·2 answers
  • X+3y=y+3x+7 solve for X
    11·1 answer
  • Solve -8/5 x - 6 = -54
    15·2 answers
  • PLEASE HELP ILL GIVE YOU BRAINLIEST!!! ITS GEOMETRY
    12·1 answer
  • To convert 10 minutes to seconds, you would use the ratio. 1 seconds/ 60 mins
    14·2 answers
  • Simplify this please!
    11·2 answers
  • The largest living thing on earth is a California sequoia tree named the “General Sherman”. The diameter of the tree at the base
    6·2 answers
  • Choose the correct simplification of the expression (5x^5)^2.
    13·2 answers
  • a drawing of a room has a scale of 1 inch = 4 feet. if the actual dimensions of the room are 14 feet by 16 feet. what are the di
    6·1 answer
  • 4a3b5 − 16a5b2 + 12a2b3 factored form
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!