Answer:
3497.47 feet
I think it's the answer because when you look where I've drawn...that's where the angle of depression is and 6600 is the hypotenuse, so you use the sine method where you have opposite over hypotenuse

and you'll get your answer as 3497.47
Answer:
y = 3x - 16
Step-by-step explanation:
We are asked to find the equation of the line perpendicular to 2x + 6y = 30
We can use two formulas for this question, either
y = mx + c. Or
y - y_1 = m(x - x_1)
Step 1: calculate the slope
From the equation given
2x + 6y = 30
Make y the subject of the formula
6y = 30 - 2x
Or
6y = -2x + 30
Divide both sides by 6, to get y
6y/6 = ( -2x + 30)/6
y = (-2x + 30)/6
Separate them in order to get the slope
y = -2x/6 + 30/6
y = -1x/3 + 5
y = -x/3 + 5
Slope = -1/3
Step 2:
Note: if two lines are perpendicular to the other, both are negative reciprocal of each other
Perpendicular slope = 3/1
Substitute the slope into the equation
y = mx + c
y = 3x + c
Step 3: substitute the point into the equation
( 6,2)
x = 6
y = 2
2 = 3(6) + c
2 = 18 + c
Make the c the subject
2 - 18 =c
c = 2 - 18
c = -16
Step 4: sub the value of c into the equation
y = 3x + c
y = 3x - 16
The equation of the line is
y = 3x - 16
If you try out the other formula, u will get the same answer
It is 0.35 That is the answer.
The missing part of the question is highlighted in bold format
The Wall Street Journal reported that the age at first startup for 90% of entrepreneurs was 29 years of age or less and the age at first startup for 10% of entrepreneurs was 30 years of age or more.
Suppose a sample of 200 entrepreneurs will be taken to learn about the most important qualities of entrepreneurs. Show the sampling distribution of p where p is the sample proportion of entrepreneurs whose first startup was at 29 years of age or less. If required, round your answers to four decimal places. np = n(1-p) = E(p) = σ(p) = (b) Suppose a sample of 200 entrepreneurs will be taken to learn about the most important qualities of entrepreneurs. Show the sampling distribution of p where p is now the sample proportion of entrepreneurs whose first startup was at 30 years of age or more. If required, round your answers to four decimal places.
Answer:
(a)
np = 180
n(1-p) = 20
E(p) = p = 0.9
σ(p) = 0.0212
(b)
np = 20
n(1 - p) = 180
E(p) = p = 0.1
σ(p) = 0.0212
Step-by-step explanation:
From the given information:
Let consider p to be the sample proportion of entrepreneurs whose first startup was at 29 years of age or less
So;
Given that :
p = 90% i.e p = 0.9
sample size n = 200
Then;
np = 200 × 0.9 = 180
n(1-p) = 200 ( 1 - 0.9)
= 200 (0.1)
= 20
Since np and n(1-p) are > 5 ; let assume that the data follows a normal distribution ;
Then:
The expected value of the sampling distribution of p = E(p) = p = 0.9
Variance 



The standard error of σ(p) = 

= 0.0212
(b)
Here ;
p is now the sample proportion of entrepreneurs whose first startup was at 30 years of age or more
p = 10% i.e p = 0.1
sample size n = 200
Then;
np = 200 × 0.1 = 20
n(1 - p) = 200 (1 - 0.1 ) = 180
Since np and n(1-p) are > 5 ; let assume that the data follows a normal distribution ;
Then:
The Expected value of the sampling distribution of p = E(p) = p = 0.1
Variance 



The standard error of σ(p) = 

= 0.0212