1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
2 years ago
11

Al sumar fracciones con igual denominador, debemos sumar numerador con numerador y denominador con denominador. Verdadero o fals

o pls es para ahora :(
Mathematics
1 answer:
Ahat [919]2 years ago
7 0

Answer:

La respuesta es falso.  

Step-by-step explanation:

La respuesta es falso.  

Cuando se suman fraccciones con igual denominador, se suman los numeradores (numerador con numerador) y se deja el mismo denominador (el cual es común en ambos). Por ejemplo, la suma de 1/5 + 3/5 da como resultado:    

\frac{1}{5} + \frac{3}{5} = \frac{1 + 3}{5} = \frac{4}{5}

En el caso de fracciones con diferentes denominadores, tampoco se suma numerador con numerador y denominador con denominador. En ese caso se debe encontrar el mínimo común múltiplo.

 

Por lo tanto, la respuesta es falso.

Espero que te sea de utilidad!

You might be interested in
MATH HELP PLZ!!!
RoseWind [281]

Answer:

a)    tan (157.5) = \frac{1-cos 315}{sin315}

b)

            sin (165) =\sqrt{ \frac{1-cos (330) }{2}}

c)

      sin^{2} (157.5) = \frac{1-cos (315) }{2}

d)

  cos 330° = 1- 2 sin² (165°)

       

         

Step-by-step explanation:

<u><em>Step(i):-</em></u>

By using trigonometry formulas

a)

cos2∝  = 2 cos² ∝-1

cos∝ = 2 cos² ∝/2 -1

1+ cos∝ =  2 cos² ∝/2

cos^{2} (\frac{\alpha }{2}) = \frac{1+cos\alpha }{2}

b)

cos2∝  = 1- 2 sin² ∝

cos∝  = 1- 2 sin² ∝/2

sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}

<u><em>Step(i):-</em></u>

Given

              tan\alpha = \frac{sin\alpha }{cos\alpha }

          we know that trigonometry formulas

        sin\alpha = 2sin(\frac{\alpha }{2} )cos(\frac{\alpha }{2} )

         1- cos∝ =  2 sin² ∝/2

      Given

         tan(\frac{\alpha }{2} ) = \frac{sin(\frac{\alpha }{2} )}{cos(\frac{\alpha }{2}) }

put ∝ = 315

      tan(\frac{315}{2} ) = \frac{sin(\frac{315 }{2} )}{cos(\frac{315 }{2}) }

     multiply with ' 2 sin (∝/2) both numerator and denominator

        tan (\frac{315}{2} )= \frac{2sin^{2}(\frac{315)}{2}  }{2sin(\frac{315}{2} cos(\frac{315}{2}) }

Apply formulas

 sin\alpha = 2sin(\frac{\alpha }{2} )cos(\frac{\alpha }{2} )

  1- cos∝ =  2 sin² ∝/2

now we get

 tan (157.5) = \frac{1-cos 315}{sin315}

       

b)

          sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}

               put ∝ = 330° above formula

             sin^{2} (\frac{330 }{2}) = \frac{1-cos (330) }{2}

            sin^{2} (165) = \frac{1-cos (330) }{2}

            sin (165) =\sqrt{ \frac{1-cos (330) }{2}}

c )

         sin^{2} (\frac{\alpha }{2}) = \frac{1-cos\alpha }{2}

               put ∝ = 315° above formula

             sin^{2} (\frac{315 }{2}) = \frac{1-cos (315) }{2}

            sin^{2} (157.5) = \frac{1-cos (315) }{2}

           

d)

     cos∝  = 1- 2 sin² ∝/2

   put      ∝ = 330°

       cos 330 = 1 - 2sin^{2} (\frac{330}{2} )

      cos 330° = 1- 2 sin² (165°)

3 0
3 years ago
Could someone help i’ll mark brainliest! please explain too
-BARSIC- [3]

Answer:

C. 8

Step-by-step explanation:

I almost thought this was going to be Pythagorean Theorem, but no.

Use Cosine Law:

cos θ =  \frac{10^2 + 21^2 - 17^2}{2(10)(21)}

θ = cos−1(0.6)

θ = 53.130...

Now use the SOHCAHTOA ratio for sine (\frac{opposite}{hypotenuse}) to find x now that you have one angle:

sin θ = \frac{x}{10}

x = 10sinθ (θ isn't needed to be written out as it is shown in the equation above)

x = 8

3 0
2 years ago
A rectangle is 5 inches long and 7 inches wide.How many one-square-inch tiles are needed to cover its area?
Ket [755]

Answer:

35 square inches

Step-by-step explanation:

The formula is bh

b being base and h being height. In this, the width is height and length is base.

5 times 7 is 35

Mark me as brainliest if this helps!

5 0
3 years ago
Major arc definition
aliya0001 [1]

Answer:

A major arc (right figure) is an arc of a circle having measure greater than or equal to ( radians). SEE ALSO: Arc, Minor Arc, Semicircle.

Step-by-step explanation:

4 0
3 years ago
HELP ILL MARK U BRAINLIEST
Lena [83]

Answer:

74

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • Which of these are the x- and y-intercepts of the graph?
    9·1 answer
  • What is 217.33 rounded to the nearest tenth
    6·2 answers
  • Which statements describe the function f(x)=2x+24/x^2+4x-96<br> Check all that apply.
    14·1 answer
  • . A recipe calls for 32 ounces of pasta to be used. How many pounds of pasta is that if 1 ounce equals about 0.06 pounds?
    5·1 answer
  • Please help me on my math
    11·2 answers
  • Line AB contains points A (-2, 3) and B (4, 5). Line AB has a slope that is
    10·2 answers
  • What is the value of (0.6)^3 ?
    14·1 answer
  • Note: Enter your answer and show all the steps that you use to solve this problem in the space provided. a) Simplify the express
    6·1 answer
  • What is the distance between the points (-3, -1) and (1, 2)?
    12·1 answer
  • Help ASAP and please please please answer correctly only if u truly know the answer!!!!!
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!