1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
8

Alligators captured in Florida are found to have a mean length of 2 meters and a standard deviation of 0.35 meters. The lengths

of alligators are believed to be approximately normally distributed. What is the approximate length of an alligator at the 67th percentile of alligator lengths?
a. 2.01 meters.
b. 2.44 meters.
c. 2.21 meters.
d. 2.15 meters.
e. 2.09 meters.
Mathematics
1 answer:
STALIN [3.7K]3 years ago
5 0

Answer:

The correct option is (d). 2.15 meters.

Step-by-step explanation:

According to the given scenario, the approximate length of an alligator at the 67th percentile is as follows:

The length of an alligator is X \sim N(2,0.35) .

Let us assume the P_{67} be the 67th percentile

P(X

\frac{P_{67 - 2 }}{0.35} = 0.44\\\\P_{67} = 2.154

Hence, the correct option is (d). 2.15 meters

You might be interested in
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
Marcos has 3/5 of a pizza remaining and gives his friend 1/5 of the remaining pizza. How much pizza is left over?
LuckyWell [14K]

Answer

at first I said 1/2 but it's 2/5's.

Step-by-step explanation:

\frac{3}{5}  -  \frac{1}{5 }  =  \frac{2}{5}

3 0
3 years ago
9 squared ? 11 ? 8 ? 4 ? 1 = 60 The ? Can be +,-,x or d division
dexar [7]

5.5.ooooooooooooooooooooooooooooo1111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222333333333333333333333333333333333333333333344444444444444444444444444444444444444444444445555555555555555555555555555555555555555556666666666666666666666666666666666666777777777777777777777777777777777777788888888888888888889999999999999999999999999999999999999999999999999999999999999999999999999999999999

5 0
3 years ago
A cell phone company has a basic monthly plan of $40 plus $0.45 for any minutes used over 700. Before receiving his statement, J
Serga [27]

Ok so we know he used over 700 because he was charged more than 40. Then we take the $8.10 and divide 0.45 into it. This then gives you 18 more minutes. Then add 18 to 700 and you get 718 min.
4 0
3 years ago
.686 rounded to the nearest tenth
maria [59]
.690 because 6 rounds up to 10 so it would go up to the next tenth
8 0
3 years ago
Read 2 more answers
Other questions:
  • What’s the difference between nine and twice a number,x, is one
    7·1 answer
  • What is the quotient?<br> -4/5^2
    6·1 answer
  • 2(5+r) write expression results from using distributive property
    6·2 answers
  • Plz help..............refresh the page before u answer
    8·1 answer
  • (5b-9)-3(8-2b) simplify the expressio
    5·2 answers
  • C). The local bus service has 2 lines of buses that start together at 8
    11·1 answer
  • Can someone please help? I’ll give brainliest!!
    6·1 answer
  • Please please help!!, please show help if possible :D
    8·1 answer
  • PLEASE HURRY I NEED HELP :( The area of a regular hexagon inscribed in a circle with radius 2 is
    10·1 answer
  • Suppose that the mean and s.d of the tuition fee paid by bs mathematics students in umt is 150and 30 in uds, respectively. it is
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!