Answer:
the answer is 27
Step-by-step explanation:
for the show your work all you have to do is write 3x3x3=27
Answer: The answer is ![\textup{The other root is }\dfrac{8}{3}~\textup{and}q=40.Step-by-step explanation: The given quadratic equation is[tex]3x^2+7x-q=0\\\\\Rightarrow x^2-\dfrac{7}{3}x-\dfrac{q}{3}=0.](https://tex.z-dn.net/?f=%5Ctextup%7BThe%20other%20root%20is%20%7D%5Cdfrac%7B8%7D%7B3%7D~%5Ctextup%7Band%7Dq%3D40.%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EStep-by-step%20explanation%3A%20%20%3C%2Fstrong%3EThe%20given%20quadratic%20equation%20is%3C%2Fp%3E%3Cp%3E%5Btex%5D3x%5E2%2B7x-q%3D0%5C%5C%5C%5C%5CRightarrow%20x%5E2-%5Cdfrac%7B7%7D%7B3%7Dx-%5Cdfrac%7Bq%7D%7B3%7D%3D0.)
Also given that -5 is one of the roots, we are to find the other root and the value of 'q'.
Let the other root of the equation be 'p'. So, we have

and

Thus, the other root is
and the value of 'q' is 40.
Answer:
A solution curve pass through the point (0,4) when
.
There is not a solution curve passing through the point(0,1).
Step-by-step explanation:
We have the following solution:

Does any solution curve pass through the point (0, 4)?
We have to see if P = 4 when t = 0.




A solution curve pass through the point (0,4) when
.
Through the point (0, 1)?
Same thing as above




No solution.
So there is not a solution curve passing through the point(0,1).
Answer:
UHm, if you dont mind me asking, what exatly is the question
Step-by-step explanation: