Step-by-step explanation:
Since AB=I, we have
det(A)det(B)=det(AB)=det(I)=1.
This implies that the determinants det(A) and det(B) are not zero.
Hence A,B are invertible matrices: A−1,B−1 exist.
Now we compute
I=BB−1=BIB−1=B(AB)B−1=BAI=BA.since AB=I
Hence we obtain BA=I.
Since AB=I and BA=I, we conclude that B=A−1.
Answer: 12 times
Step-by-step explanation: 105 - 45 for initial fee is 60 then you divide that by 5 for 12
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>✌</em>
Answer:
x = 9
y = -10
Step-by-step explanation: