You don’t have any answer chooses listed but i’ll say F isn’t a molecule because it stands for fluorine which happens to be an element that only has one atom when a molecule is supposed to have two or more atoms.
.100 mol CO2 x

using the values of the periodic you first add the masses of C (12.01g) and O (there are two so it'll be 32.00g). That value will give the mass of 1mole of CO2.
I hate to do this, but
https://youtu.be/Pft2CASl0M0 is a link to a mr andersen video. I dislike watching these cause this is what my teacher uses instead of actually having to teach herself.
Answer:
1) Write the balanced equation:
2C2H6 + 7O2 ---> 4CO2 + 6H2O
2) Determine limiting reagent:
C2H6 ⇒ 13.8 g / 30.0694 g/mol = 0.45894 mol
O2 ⇒ 45.8 g / 31.9988 g/mol = 1.4313 mol
C2H6 ⇒ 0.45894 / 2 = 0.22947
O2 ⇒ 1.4313 / 7 = 0.20447
Oxygen is limiting.
3) Determine theoretical yield of water:
The oxygen : water molar ratio is 7 : 6
7 is to 6 as 1.4313 mol is to x
x = 1.2268286 mol of water
4) Convert moles of water to grams:
1.2268286 mol times 18.015 g/mol = 22.1 g (to three sig figs)
Solution to (b):
14.2 g / 22.1 g = 64.2%
Explanation:
Answer:
13598 J
Explanation:
Q = m × c × ∆T
Where;
Q = amount of energy (J)
m = mass (grams)
c = specific heat capacity
∆T = change in temperature
m = 65g, specific heat capacity of water = 4.184J/g°C, initial temperature= 100°C, final temperature = 150°C
Q = 65 × 4.184 × (150 - 100)
Q = 271.96 × 50
Q = 13598 J
Hence, 13598 J of energy is required to boil 65 grams of 100°C water and then heat the steam to 150°C.