<u>Answer:</u> The rate law for the reaction is ![\text{Rate}=k[NO_3][CO]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO_3%5D%5BCO%5D)
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
In a mechanism of the reaction, the slow step in the mechanism determines the rate of the reaction.
For the given chemical reaction:

The intermediate reaction of the mechanism follows:
Step 1: 
Step 2: 
As, step 2 is the slow step. It is the rate determining step
Rate law for the reaction follows:
![\text{Rate}=k[NO_3][CO]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO_3%5D%5BCO%5D)
Hence, the rate law for the reaction is written above.
Answer:
Using the periodic table of the elements to find atomic weights, we find that hydrogen has an atomic weight of 1, and oxygen's is 16. In order to calculate the molecular weight of one water molecule, we add the contributions from each atom; that is, 2(1) + 1(16) = 18 grams/mole.
Explanation:
hope this helped
Yes, the crystals will have more time to form and therefore are more likely to be larger compared to one that is cooled quickly.
Answer:
Cr(OH)2(s), Na+(aq), and NO3−(aq)
Explanation:
Let is consider the molecular equation;
2NaOH(aq) + Cr(NO3)2(aq) -----> 2NaNO3(aq) + Cr(OH)2(s)
This is a double displacement or double replacement reaction. The reacting species exchange their partners. We can see here that both the sodium ion and chromium II ion both exchanged partners and picked up each others partners in the product.
Sodium ions and nitrate ions now remain in the solution while chromium II hydroxide which is insoluble is precipitated out of the solution as a solid hence the answer.
Carbonic acid ---> water + carbon dioxide
so it's the second option