Answer:
The next time both will leave the bus station at the same time is 7:15 a.m.
Step-by-step explanation:
Since 15 and 75 are multiples to each other.
So, L.C.M. of 15 and 75 is 75.
So, after 75 minutes both buses will leave the station at the same time.
Also since buses begin their routes at 6 a.m.
So, next time they will meet at
6 hours 0 minutes + 75 minutes = 7 hours 15 minutes = 7:15 a.m.
Imma go with F just because I think it’s right
Answer: it’s d
Step-by-step explanation: i did that
Answer:c
Step-by-step explanation:just did the test
The value of 'x' is 24.2 and the value of 'y' is 46.5.
To solve this, we do the following steps.
<u>Step 1:</u> Divide 'y' into 2 parts, 'a' and 'b'. 'a' would be the lower leg of the 45°-45°-90° triangle, while 'b' is the lower leg of the 30°-60°-90° triangle.<em>
</em><u>Step 2:</u> Given the hypotenuse (34) of the 30°-60°-90° triangle, solve for 'b' using the cosine of 30°.
cos30° = b/34 [adjacent over hypotenuse]
b = 34cos30° [cross-multiply]
b = 29.4
<u>Step 3:</u> Solve for the 90° leg (the side opposite the 30° angle) using the Pythagorean Theorem. We will name this leg "h" (cuz height).
l² + l² = hyp²
29.4² + h² = 34²
h² = 1156 - 864.36
√h² = √291.64
h = 17.1
<u>Step 4:</u> Solve for 'x' by using the 45°-45°-90° triangle ratio (1:1:√2). √2 would be the hypotenuse of the 45°-45°-90° triangle, while 1 would be both congruent legs.
Side 'h' is one of the legs; side 'a' is the other. Since these legs are congruent, 'a' also measures 17.1. Now all we need to do is solve for 'x', which is our hypotenuse. To do this, we simply multiply the measure of side 'h' or 'a' by √2.
x = 17.1 × √2
x = 24.2
<u>Step 5:</u> Now that we got the value of 'x', solve for 'y' by adding the measures of sides 'a' and 'b' together.<em>
</em><u /> y = a + b
y = 17.1 + 29.4
y = 46.5
And there you have it! <em>Hope this helps.</em>
<em>
</em>