The range in the average rate of change in temperature of the substance is from a low temperature of 1 F to a high of -11 F.
<h3>What is a formula for Fahrenheit?</h3>
The conversion formula for a temperature that is expressed on the Celsius (°C) scale to its Fahrenheit (°F) ;
°F = (9/5 × °C) + 32.
Given function:
f(x)= -6 sin(7/3 x+ 1/6) -5
The function will be maximum at the 7/3 x +1/6= 3π/2
So, the maximum temperature will be
= -6 sin (3π/2) -5
= 6 -5
= 1 F
The function will be minimum at the 7/3 x +1/6= π/2
Therefore, the maximum temperature will be
= -6 sin (π/2) - 5
= -6 -5
= -11 F
Learn more about this concept here:
brainly.com/question/26172293
#SPJ1
Answer: Y= 1.6
Step-by-step explanation: 1.6 + 0.4 =2
Answer:
B
Step-by-step explanation:
y × y = ![y^{2}](https://tex.z-dn.net/?f=y%5E%7B2%7D)
y × -3 = -3y
![y^{2} -3y](https://tex.z-dn.net/?f=y%5E%7B2%7D%20-3y)
Answer:
![a=10.92 units](https://tex.z-dn.net/?f=a%3D10.92%20units)
![b=14.51 units](https://tex.z-dn.net/?f=b%3D14.51%20units)
Step-by-step explanation:
We are given that c=6 units
![\angle A=43^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20A%3D43%5E%7B%5Ccirc%7D)
![\angle B=115^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20B%3D115%5E%7B%5Ccirc%7D)
We have to find the side length a and b.
We know that sum of angles of a triangle =180 degrees
![\angle A+\angle B+\angle C=180](https://tex.z-dn.net/?f=%5Cangle%20A%2B%5Cangle%20B%2B%5Cangle%20C%3D180)
Substitute the values then we get
![43+115+\angle C=180](https://tex.z-dn.net/?f=43%2B115%2B%5Cangle%20C%3D180)
![158+\angle C=180](https://tex.z-dn.net/?f=158%2B%5Cangle%20C%3D180)
![\angle C=180-158=22^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20C%3D180-158%3D22%5E%7B%5Ccirc%7D)
sine law: ![\frac{a}{sin A}=\frac{b}{sin B}=\frac{c}{sin C}](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7Bsin%20A%7D%3D%5Cfrac%7Bb%7D%7Bsin%20B%7D%3D%5Cfrac%7Bc%7D%7Bsin%20C%7D)
![\frac{a}{sin 43^{\circ}}=\frac{6}{sin 22^{\circ}}](https://tex.z-dn.net/?f=%5Cfrac%7Ba%7D%7Bsin%2043%5E%7B%5Ccirc%7D%7D%3D%5Cfrac%7B6%7D%7Bsin%2022%5E%7B%5Ccirc%7D%7D)
![a=\frac{6}{sin 22^{\circ}}\times sin 43^{\circ}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7B6%7D%7Bsin%2022%5E%7B%5Ccirc%7D%7D%5Ctimes%20sin%2043%5E%7B%5Ccirc%7D)
![a=10.92 units](https://tex.z-dn.net/?f=a%3D10.92%20units)
![\frac{b}{sin 115^{\circ}}=\frac{6}{sin 22^{\circ}}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Bsin%20115%5E%7B%5Ccirc%7D%7D%3D%5Cfrac%7B6%7D%7Bsin%2022%5E%7B%5Ccirc%7D%7D)
![b=\frac{6}{sin 22^{\circ}}\times sin 115^{\circ}=14.51](https://tex.z-dn.net/?f=%20b%3D%5Cfrac%7B6%7D%7Bsin%2022%5E%7B%5Ccirc%7D%7D%5Ctimes%20sin%20115%5E%7B%5Ccirc%7D%3D14.51)
![b=14.51 units](https://tex.z-dn.net/?f=b%3D14.51%20units)