1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad [161]
3 years ago
10

Please help with this

Mathematics
2 answers:
alina1380 [7]3 years ago
7 0

Answer:

d the last one

Step-by-step explanation:

18/3 mark me as brainlist plz

Jlenok [28]3 years ago
3 0

Answer:

18/3

Step-by-step explanation:

only multiply the numerator

You might be interested in
Use the distributive property to write an expression that is equivalent to each expression 1/5(20y - 4x - 13)
DiKsa [7]
The answer should be
4y-4/5x-13/5
8 0
3 years ago
A vehicle travels on a highway at a rate of 65 mi/h how long does it take the vehical to travel 25 mi?
katrin [286]
Use the velocity formula and solve for time.v=d/t
t=d/v

Substitute your variables and solve.
65 mi/hr = 65 / 3600 mi/second
25 mi / ( 65/3600) = 1384.6 seconds
4 0
3 years ago
PLEASE HELP!!! WILL THANK AND MARK BRAINIEST!!!! Match the properties for 2.8 + 6.7 - 8.4 - 4.1
uysha [10]
Comunitie and assoiative

3 0
3 years ago
Someone who is good with algebra i equations and inequalities?
guajiro [1.7K]
Somebody? I think you can find someone like that in your school... nice profile picture.
5 0
3 years ago
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
Other questions:
  • When simplified, the expression (x1/8)(x3/8) is 12. Which is a possible value of x?
    5·2 answers
  • Show work for this scientific notation
    12·1 answer
  • I need help with this question with explanation
    11·1 answer
  • What is the range of the relation?
    15·1 answer
  • A floor is tiled with a pattern consisting of regular octagons and squares as shown. Find the measure of each angle at the circl
    11·1 answer
  • A binder of baseball cards hold 625
    14·1 answer
  • What does y equal y=-1+6
    15·1 answer
  • Henrik makes 5 L of juice from his blueberries. He fills the juice in bottles like
    13·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20x%20%5Cfrac%7Bx%5E%7B2%7D-x-2%7D%7Bx-2%7D" id="TexFormula1" title="\lim_{x\
    15·1 answer
  • Help plz i need help help help plz
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!