Answer:
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 38 minutes, standard deviation of 4.5 minutes.
Determine the interval that represents the middle 68% of her commute times.
Within 1 standard deviation of the mean. So
38 - 4.5 = 33.5 minutes
38 + 4.5 = 42.5 minutes.
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Answer:
the second one :)
Step-by-step explanation:
Use pemdas : so do parenthesis first 15-8, then multiply the answer by 6. OR u can use distributive property & multiply 6 by 15 & 8
TABLE / BOX
| h ||||||| 0 | 1 | 2 | 3 | 5 | 9 | 12 | 13 | 15
| M(h) | 0| .1/.5 |.2/.5|.3/.5| 1 |1.8|2.4| 2.6| 3
I tried my best on putting it in order sorry if its not clear
make shure to put brainliest!
Answer:
Solutions are 2, -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i
or 2, -1 + 1.58 i and -1 - 1.58i
(where the last 2 are equal to nearest hundredth).
Step-by-step explanation:
The real solution is x = 2:-
x^3 - 8 = 0
x^3 = 8
x = cube root of 8 = 2
Note that a cubic equation must have a total of 3 roots ( real and complex in this case). We can find the 2 complex roots by using the following identity:-
a^3 - b^3 = (a - b)(a^2 + ab + b^2).
Here a = x and b = 2 so we have
(x - 2)(x^2 + 2x + 4) = 0
To find the complex roots we solve x^2 + 2x + 4 = 0:-
Using the quadratic formula x = [-2 +/- sqrt(2^2 - 4*1*4)] / 2
= -1 +/- (sqrt( -10)) / 2
= -1 + 0.5 sqrt10 i and -1 - 0.5 sqrt10 i