Answer:
<h2><u><em>
the circumference of a circle is defined as:</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
c = pi*diameter</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
if we have x segments of length y, then we can fit:</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
c/y = z</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
we can fit z segments of size y on the circumference c</em></u></h2><h2><u><em>
</em></u></h2>
<u><em></em></u>
Answer: b=2
Step-by-step explanation:
-2+2=0
So, b would be 2 because -2 plus 2 equals zero
It might be 9 if it's not 6 ...but I can't see how it wouldn't be 6?
Answer:
For 3x^2+4x+4=0
Discriminant= = -32
The solutions are
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= -44
The solutions
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= -36
The solutions
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a= (1-√-1)/3
Step-by-step explanation:
Formula for the discriminant = b²-4ac
let the discriminant be = x for the equations
The solution of the equations
= (-b+√x)/2a and = (-b-√x)/2a
For 3x^2+4x+4=0
Discriminant= 4²-4(3)(4)
Discriminant= 16-48
Discriminant= = -32
The solutions
(-b+√x)/2a =( -4+√-32)/6
(-b+√x)/2a= (-4 +4√-2)/6
(-b+√x)/2a= (-2+2√-2)/3
(-b-√x)/2a =( -4-√-32)/6
(-b-√x)/2a= (-4 -4√-2)/6
(-b-√x)/2a= (-2-2√-2)/3
For 3x^2+2x+4=0
Discriminant= 2²-4(3)(4)
Discriminant= 4-48
Discriminant= -44
The solutions
(-b+√x)/2a =( -2+√-44)/6
(-b+√x)/2a= (-2 +2√-11)/6
(-b+√x)/2a= (-1+√-11)/3
(-b-√x)/2a =( -2-√-44)/6
(-b-√x)/2a= (-2 -2√-11)/6
(-b-√x)/2a= (-1-√-11)/3
For 9x^2-6x+2=0
Discriminant= (-6)²-4(9)(2)
Discriminant= 36 -72
Discriminant= -36
The solutions
(-b+√x)/2a =( 6+√-36)/18
(-b+√x)/2a= (6 +6√-1)/18
(-b+√x)/2a= (1+√-1)/3
(-b-√x)/2a =( 6-√-36)/18
(-b-√x)/2a= (6 -6√-1)/18
(-b-√x)/2a= (1-√-1)/3
Answer:
B. 8 x 10^3
Step-by-step explanation:
1.6 x 10^5 / 0.2 x 10^2
= 160 000 / 20
= 8 000
You can write this as 8 x 10^3