Answer:
<em><u>M</u></em><em><u>a</u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u>m</u></em><em><u>a</u></em><em><u>t</u></em><em><u>i</u></em><em><u>c</u></em><em><u>a</u></em><em><u>l</u></em><em><u>l</u></em><em><u>y</u></em><em><u>:</u></em>
That will be
<em>=</em><em> </em><em>1</em><em>5</em><em>0</em><em>0</em><em> </em><em>x</em><em> </em><em>1</em><em>5</em><em> </em><em>x</em><em> </em><em>4</em><em>5</em><em>0</em><em>0</em>
<em>=</em><em> </em><em><u>1</u></em><em><u>0</u></em><em><u>1</u></em><em><u>,</u></em><em><u>2</u></em><em><u>5</u></em><em><u>0</u></em><em><u>,</u></em><em><u>0</u></em><em><u>0</u></em><em><u>0</u></em>
Answer: B) 0.00337 m3.
Explanation:
Given data:
Mass of the ball = 10kg
Weight of the ball in air = 98N
Weight of the ball in water = 65N
Solution:
To get the Volume of the ball when submerged in water, we divide the weight of the ball in water with the difference in apparent weight by 9.8m/s^2.
= 98 - 65 / 9.8
= 33 / 9.8
= 3.37kg
The volume of the ball is 3.37kg
The density of water is 1kg per Liter.
So 3.37 kg of water would have a volume of 3.37 Liters.
Therefore the ball would have a volume of 3.37 Liters (or 0.00337 cubic meters).
Answer:
It is easier to hear a musician in the classroom than outdoors
Explanation:
It is easier to hear a musician in the classroom due to the improved acoustics provided by the walls of the classroom whereby along with the direct sound of the musician, which is the lead source of the sounds, there is an increased number of indirect sound reaching the ear in the classroom than outdoors and due to precedence effect, all the sound appear to come from the musician
In music played outside, along side the direct sound from the musician, the indirect sound that reach the ear is echoed from maybe by only the ground while the majority of the sound from the music wanders away with the wind and in other directions as well as being absorbed such that speakers will be required to improve the sound of the music outdoors.
Answer:
F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)
Explanation:
Two point charges (q₁, q₂) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:
F=K*q₁*q₂/d² Formula (1)
F: Electric force in Newtons (N)
K : Coulomb constant in N*m²/C²
q₁,q₂:Charges in Coulombs (C)
d: distance between the charges in meters(m)
Equivalence
1nC= 10⁻⁹C
Data
K=8.99x10⁹N*m²/C²
q₁ = 7.94-nC= 7.94*10⁻⁹C
q₂= 4.14-nC= 4.14 *10⁻⁹C
d= 1.77 m
Magnitude of the electrostatic force that one charge exerts on the other
We apply formula (1):

F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)