Q = mcθ
Where m = mass of water in kg.
c = specific heat capacity in kJ/kg⁰C, c for water = 4200 kJ/kg⁰C
θ = temperature rise in ⁰C
Q = 100*4200* 20 Note here the temperature rise is 20 ⁰C
Q = 8 400 000 J
In calories, 4.2 J = 1 Calorie
= 8 400 000 / 4.2 = 200 000
Q = 200 000 Calories
Answer:
5295.3 N
Explanation:
According to law of momentum conservation, the change in momentum of the ball shall be from the momentum generated by the batter force
mv + P = mV
P = mV - mv = m(V - v)
Since the velocity of the ball before and after is in opposite direction, one of them is negative
P = 0.14(44.8 - (-19.5)) = 9 kg m/s
Hence the force exerted to generate such momentum within 1.7ms (0.0017s) is
F = P/t = 9/0.0017 = 5295.3 N
<span>The moon is smaller and more dense than the Earth, and has less extreme temperature changes. The statement presented is True. In terms of temperature, since there is no atmosphere on the moon, then it has less extreme temperature changes. The moon can reach 253 Fahrenheit in the day and -387 Fahrenheit at night.</span>
Answer:
1.42
Explanation:
<em> got it right on my homework </em>
Momentum is conserved in a collision. Momentum is mass*velocity, so you can find your answer by calculating initial and final momentums and setting them equal to each other.
15kg * 3.50 m/s + 9kg * 2.35 m/s = 73.65 kg m/s
73.65 = 9 * 2.8 + 15x
solve for x
x= 3.23
The final velocity is 3.23 m/s