<em></em>
Answer:
<u><em>The aufbau principle</em></u>
<u />
<u><em>The Pauli exclusion principle</em></u>
<u><em></em></u>
<u><em>Hund's rule of maximum multiplicity</em></u>
Explanation:
<u><em>The aufbau principle:</em></u>
<em></em>
The fundamental electronic configuration is achieved by placing the electrons one by one in the different orbitals available for the atom, which are arranged in increasing order of energy.
<u><em>The Pauli exclusion principle:</em></u>
<em></em>
Two electrons of the same atom cannot have their four equal quantum numbers. Because each orbital is defined by the quantum numbers n, l, and m, there are only two possibilities ms = -1/2 and ms = +1/2, which physically reflects that each orbital can contain a maximum of two electrons, having opposite spins
<u><em>Hund's rule of maximum multiplicity:</em></u>
This rule says that when there are several electrons occupying degenerate orbitals, of equal energy, they will do so in different orbitals and with parallel spins, whenever this is possible. Because electrons repel each other, the minimum energy configuration is one that has electrons as far away as possible from each other, and that is why they are distributed separately before two electrons occupy the same orbital.
Elastic potential energy is kind of like pulling on something and then letting it go, with rubber bands, or a bow, or a slingshot, something with elastic properties.
Gravitational potential energy has to do with how high something is, and has to do with earth’s gravitational pull.
Answer:
I think the right answer is option B.
Answer:

Explanation:
given,
F = 14.1 i + 0 j + 5.1 k
displacement = 6 m
Assuming block is moving in x- direction
we know,
dW = F dx


![W = F[x]_0^6](https://tex.z-dn.net/?f=W%20%3D%20F%5Bx%5D_0%5E6)


hence, work done by the force is equal to 