When a large rock is weathered into tiny pieces which add up the weight of the original rock, this demonstrates the law of conservation of matter.
According to this law the mass of an object doesn't change with time and also it does not depends on how the particles are arranged themselves.
Hence, option (C) is correct.
Answer:
Explanation:
The direction of force will be in upward direction making an angle of θ with the vertical .
Reaction force R = mg - F cosθ
Friction force = μR
= .36 (mg - F cosθ )
Horizontal component of applied force
= F sinθ
For equilibrium
F sinθ = .36 (mg - F cosθ)
F sinθ + .36 F cosθ =.36 mg
F (sinθ + .36 cosθ) = .36 mg
F R( cosδsinθ +sinδ cosθ) = .36 mg ( Rcosδ = 1 . Rsinδ= .36 )
F R sin( θ+δ ) = . 36 mg
F = .36 mg / Rsin( θ+δ )
For minimum F , sin( θ+δ ) should be maximum
sin( θ+ δ ) = sin 90
θ+ δ = 90
Rsinδ / Rcosδ = .36
δ = 20⁰
θ = 70⁰ Ans
The speed of the ball is 101miles/hr.
A mile is a unit of length that is exactly 1,609.344 metres long. Similarly, 5,280 feet or 1,760 yards make up one mile. The mile is an imperial and common US measurement of distance.
We just have to deal with unit conversions.
One mile is 5280 feet, or 1 ft = 0.000189
The speed of the ball in miles per hour is

So, the speed of the ball in miles per hour is 101miles/hr.
Learn more about miles here;
brainly.com/question/23245414
#SPJ4
<h2>
Answer:</h2>
(a) 10N
<h2>
Explanation:</h2>
The sketch of the two cases has been attached to this response.
<em>Case 1: The box is pushed by a horizontal force F making it to move with constant velocity.</em>
In this case, a frictional force
is opposing the movement of the box. As shown in the diagram, it can be deduced from Newton's law of motion that;
∑F = ma -------------------(i)
Where;
∑F = effective force acting on the object (box)
m = mass of the object
a = acceleration of the object
∑F = F - 
m = 50kg
a = 0 [At constant velocity, acceleration is zero]
<em>Substitute these values into equation (i) as follows;</em>
F -
= m x a
F -
= 50 x 0
F -
= 0
F =
-------------------(ii)
<em>Case 2: The box is pushed by a horizontal force 1.5F making it to move with a constant velocity of 0.1m/s²</em>
In this case, the same frictional force
is opposing the movement of the box.
∑F = 1.5F - 
m = 50kg
a = 0.1m/s²
<em>Substitute these values into equation (i) as follows;</em>
1.5F -
= m x a
1.5F -
= 50 x 0.1
1.5F -
= 5 ---------------------(iii)
<em>Substitute </em>
<em> = F from equation (ii) into equation (iii) as follows;</em>
1.5F - F = 5
0.5F = 5
F = 5 / 0.5
F = 10N
Therefore, the value of F is 10N
<em />