Answer:
Some cells function best at a pH of 5, while others are better at pH 7. ... control what crossed their membranes, either no molecules would make it across, ... Various types of cell transport are summarized in the concept map in ... Figure 5.7.5 demonstrates the specific outcomes of osmosis in red ...
Explanation:
<span>The major effects of insulin on muscle and adipose tissue are: (1) Carbohydrate metabolism: (a) it increases the rate of glucose transport across the cell membrane, (b) it increases the rate of glycolysis by increasing hexokinase and 6-phosphofructokinase activity, (c) it stimulates the rate of glycogen synthesis and decreases the rate of glycogen breakdown. (2) Lipid metabolism: (a) it decreases the rate of lipolysis in adipose tissue and hence lowers the plasma fatty acid level, (b) it stimulates fatty acid and triacylglycerol synthesis in tissues, (c) it increases the uptake of triglycerides from the blood into adipose tissue and muscle, (d) it decreases the rate of fatty acid oxidation in muscle and liver. (3) Protein metabolism: (a) it increases the rate of transport of some amino acids into tissues, (b) it increases the rate of protein synthesis in muscle, adipose tissue, liver, and other tissues, (c) it decreases the rate of protein degradation in muscle (and perhaps other tissues). These insulin effects serve to encourage the synthesis of carbohydrate, fat and protein, therefore, insulin can be considered to be an anabolic hormone.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
The answer is C. Species diversity or B. Ecosystem diversity everyone thinks it either those 2 nobody really knows.
Answer:
Explanation:
The cell membrane separates the cell from the outer environment. The extracellular fluid contains the sodium ions (Na+), chloride ions (Cl-), while intracellular fluid contains potassium (K +) and negative anions.
The potential difference arises when the membrane is selectively permeable to some ions. The resting potential is -70mV.
When the neurons get excited, the sodium ions start to enter by sodium channels.
Now there are more positive ions inside the cell membrane. It disturbs the resting potential i.e. -70mV. This stage is known as depolarization.
When the inside environment of the cell is more positively charged, the potassium ions start to move out of the cell. It goes out by the voltage-gated channels. Thus resting stage is maintained and it is known as repolarization.
But the initial stability of the cell membrane has to be maintained. To restore the resting stage, the sodium ions start to move out of the membrane and potassium ions enter into the cells again. This is an active transport and has done by the Na+ - K+ pump. Here 3 sodium ions move out and 2 potassium ions pumped into the cell through the plasma membrane.
Thus the resting potential regains. The potassium ions come back into the cells against the concentration gradient and ATP provides the energy for this phenomena.