Equation of an ellipse
→having center (0,0) , vertex (
and covertex
and focus
is given by:

As definition of an ellipse is that locus of all the points in a plane such that it's distance from two fixed points called focii remains constant.
Consider two points (a,0) and (-a,0) on Horizontal axis of an ellipse:
Distance from (a,0) to (c,0) is = a-c = 
Distance from (-a,0) to (c,0) is = a + c = 
a -c + a +c
= a + a
= 2 a →(Option A )
Answer:
Um 1408
Step-by-step explanation:
2% of 35,200 is 704 and 304*2= 1408
Answer:
0.5<2-√2<0.6
Step-by-step explanation:
The original inequality states that 1.4<√2<1.5
For the second inequality, you can think of 2-√2 as 2+(-√2).
Because of the "properties of inequalities", we know that when a positive inequality is being turned into a negative, the numbers need to swap and become negative. So, the original inequality becomes -1.5<-√2<-1.4. (Notice how the √2 becomes negative, too). This makes sense because -1.5 is less than -1.4.
Using our new inequality, we can solve the problem. Instead of 2+(-√2), we are going to switch "-√2" with both possibilities of -1.5 and -1.6. For -1.5, we would get 2+(-1.5), or 0.5. For -1.4, we would get 2+(-1.4), or 0.6.
Now, we insert the new numbers into the equation _<2-√2<_. The 0.5 would take the original equation's "1.4" place, and 0.6 would take 1.5's. In the end, you'd get 0.5<2-√2<0.6. All possible values of 2-√2 would be between 0.5 and 0.6.
Hope this helped!