The answer is f!!!!!!!!!!!!!!!
Answer:
#1. Identity #2. 0 #3. No solution
Step-by-step explanation:
#1.
5y + 2 = (1/2)(10y+4)
5y + 2 = 5y + 2
This would be identity as the equation of the left and right are the same. This is not to be confused with no solution(explained below).
#2.
0.5b + 4 = 2(b+2)
0.5b + 4 = 2b + 4
0.5 b - 2b = 0
b = 0
#3.
-3x + 5 = -3x + 10
This equation has no solution because when you try to bring the -3x to one side, the x variable itself gets eliminated. So, how is it different from identity? Well in the first equation, it is true that when we try to bring the 5y one side it eliminates the y variable, however, that is also true for the constants(since if we try to bring the 2 to one side, it will be 2-2 which will equal 0, thus eliminating each other), but in this case, even if we remove the x, the constants will not equal 0, thus it will have no solution.
Answer:
Step-by-step explanation:
Without brackets, we are not exactly sure what is under the root sign. There are 3 choices.
sqrt(x) + 2 - 15 = - 3
sqrt(x + 2) - 15 = - 3
sqrt(x + 2 - 15) = - 3
I think the middle one is what you intend. If not leave a note.
sqrt(x + 2) - 15 = - 3 Add 15 to both sides.
sqrt(x + 2) - 15+15 = - 3+15 Combine
sqrt(x + 2) = 12 Square both sides
x + 2 = 12^2 Do the right
x + 2 = 144 Subtract 2 from both sides.
x + 2-2 = 144-2
x = 142
Answer:
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the lifetime for a TV of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability like this:
And in order to find these probabilities we can use tables for the normal standard distribution, excel or a calculator.