Answer:
There are seven seventh roots of unity, e2πki7 , all on the unit circle, r=1 above.
The first one is at θ=2π7=360∘7=5137 ∘ , and there are others at 4π7,6π7,8π7,10π7,12π7 and of course at 0 radians, i.e. unity itself.
How to find?
There are 4 fourth roots of unity and they are 1, i,−1 and−i
Each of the roots of unity can be found by changing the value of k k k in the expression e 2 k π i / n e^{2k\pi i/n} e2kπi/n. By Euler's formula, e 2 π i = cos ( 2 π ) + i sin ( 2 π ) = 1.
I’m pretty sure you can first do 10% at a time which you can round to 13 which is 3 so 3 plus 3 then add tax
Answer: draw a dot at -7 on the x-axis and a dot at positive 7 on the y-axis. then draw your line through the dots and across the graph using a ruler or just try drawing a straight line.
Answer: OPTION C.
Step-by-step explanation:
Given a function f(x), the range of the inverse of f(x) will be the domain of the function f(x) and the range of the domain of f(x) will be the range of the inverse function.
For example, if the point (2,1) belongs to f(x), then the point (1,2) belongs to the inverse of f(x).
Observe that in the graph of the function f(x) the point (-3,1) belongs to the function, then the point (1,-3) must belong to the inverse function.
Therefore, you need to search the option that shown the graph wich contains the point (1,-3).
Observe that the Domain f(x) is (-∞,0) then the range of the inverse function must be (-∞,0).
This is the graph of the option C.