The information given about the proof does that Daniel made an error on line 2.
<h3>How to illustrate the information?</h3>
Given:
1. AB = 3x +2; BC = 4x + 8; AC = 38
2. AB + BC = AC incorrect (not an angle angle addition postulate)
3. 3x+2 + 4x + 8 = 38 correct
4. 7x + 10 = 38 correct
5. 7x = 28 correct
6. x = 4
Daniel made an error on line 2.
Here is the complete question:
Daniel wrote the following two-column proof for the given information. Given: AB = 3x + 2; BC = 4x + 8; AC = 38 Prove: x = 4 Statements Reason 1. AB = 3x + 2; BC = 4x + 8; AC = 38 1. Given 2. AB + BC = AC 2. Angle Addition Postulate 3. 3x + 2 + 4x + 8 = 38 3. Substitution Property of Equality 4. 7x + 10 = 38 4. Combining Like Terms 5. 7x = 28 5. Subtraction Property of Equality 6. x = 4 6. Division Property of Equality On which line, did Daniel make his error? line 2 line 3 line 4 line 5
Learn more about proof on:
brainly.com/question/4134755
#SPJ1
Answer:
Rational because it isn't a repeating decimal
Step-by-step explanation:
The first thing we are going to do is rewrite the expression correctly.
We have:
root (27x ^ 12 / 300x ^ 8)
Rewriting:
root ((27/300) * (x ^ 12 / x ^ 8))
root ((9/100) * (x ^ (12-8)))
root ((9/100) * (x ^ (4)))
root ((9/100) * (x ^ (4)))
3 * x ^ 2 * root ((1/100)
(3 * x ^ 2) / 10
(3/10) * (x ^ 2)
Answer:
(3/10) * (x ^ 2)
Answer: 43.5
Step-by-step explanation:

Answer:
Step-by-step explanation:
Researchers measured the data speeds for a particular smartphone carrier at 50 airports.
The highest speed measured was 76.6 Mbps.
n= 50
X[bar]= 17.95
S= 23.39
a. What is the difference between the carrier's highest data speed and the mean of all 50 data speeds?
If the highest speed is 76.6 and the sample mean is 17.95, the difference is 76.6-17.95= 58.65 Mbps
b. How many standard deviations is that [the difference found in part (a)]?
To know how many standard deviations is the max value apart from the sample mean, you have to divide the difference between those two values by the standard deviation
Dif/S= 58.65/23.39= 2.507 ≅ 2.51 Standard deviations
c. Convert the carrier's highest data speed to a z score.
The value is X= 76.6
Using the formula Z= (X - μ)/ δ= (76.6 - 17.95)/ 23.39= 2.51
d. If we consider data speeds that convert to z scores between minus−2 and 2 to be neither significantly low nor significantly high, is the carrier's highest data speed significant?
The Z value corresponding to the highest data speed is 2.51, considerin that is greater than 2 you can assume that it is significant.
I hope it helps!