Answer:
48
Step-by-step explanation:
here, we are using an = ar^n-1
so, we have to find a4= ar^4-1 = ar^3
now, putting the given values in the equation,
a4= (6)(2)^3 = 6(8) = 48
therefore, the 4th term is 48.
<em>I</em><em> </em><em>have </em><em>done </em><em>this </em><em>question</em><em> </em><em>previously</em><em> </em><em>on </em><em>Gauthmath</em><em> </em><em>app,</em><em> </em><em>you </em><em>can </em><em>check </em><em>that </em><em>app </em><em>out,</em><em> </em><em>really </em><em>cool </em><em>app.</em><em> </em>
<em>A</em><em>l</em><em>l</em><em> </em><em>the</em><em> best</em><em> </em><em>with </em><em>your </em><em>exam.</em><em> </em><em />
68 should be the answer... Sorry if I'm wrong
Answer:
The correct answer is first option
u² - 11u + 24 = 0
When u = (x² - 1)
Step-by-step explanation:
It is given that,
(x² - 1)² - (x² - 1) + 24 = 0
<u>To find the correct answer</u>
Substitute u = x² - 1
The equation becomes,
u² - 11u + 24 = 0 Where u = (x² - 1)
Therefore the correct answer is first option
u² - 11u + 24 = 0
When u = (x² - 1)
Answer:
answer
Step-by-step explanation:
This means that the point 3 is placed in quarters 3.