If both bars are made of a good conductor, then their specific heat capacities must be different. If both are metals, specific heat capacities of different metals can vary by quite a bit, eg, both are in kJ/kgK, Potassium is 0.13, and Lithium is very high at 3.57 - both of these are quite good conductors.
If one of the bars is a good conductor and the other is a good insulator, then, after the surface application of heat, the temperatures at the surfaces are almost bound to be different. This is because the heat will be rapidly conducted into the body of the conducting bar, soon achieving a constant temperature throughout the bar. Whereas, with the insulator, the heat will tend to stay where it's put, heating the bar considerably over that area. As the heat slowly conducts into the bar, it will also start to cool from its surface, because it's so hot, and even if it has the same heat capacity as the other bar, which might be possible, it will eventually reach a lower, steady temperature throughout.
Answer:
(A) a net torque but no net force on the loop.
Explanation:
The total force on the loop is zero because the forces on the opposite sides of the loop are equal but act in opposite directions and as a result they cancel each other out. The two forces on opposite sides to the axis of rotation each give rise to a torque about the axis of rotation. This torque is directed along the axis of rotation.
I can give you a search engine that could help you with all ir hw its called socratic it uses everything on the internet to search for answers it’s literally a search engine
Answer:Gravity
Explanation:Gravity is the force that pulls everything down instead of up because if we didn’t have gravity we would be floating upwards