1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
8

How do the nitrogen and other matter in your body come from other living things in the environment.

Physics
1 answer:
kifflom [539]3 years ago
3 0

Answer:

Through Photosynthesis and Respiration Process.

You might be interested in
An apple is held completely submerged just below the surface of water in a container. The apple is then moved to a deeper point
Tresset [83]

Answer:

Explanation:

When the apple is held submerged in water , it experiences a buoyant force due to which it floats in water . One has to apply downward force to keep it submerged. The lower the buoyant force , lower the force needed to submerge it in water.

When apple is held at much deeper point , it experience greater pressure due to column of water around it . So its size or its volume decreases . But its weight remains the same . Due to less volume , buoyant force also decreases ( buoyant force is equal to weight of displaced volume of water. )

Due to buoyant force becoming less , force needed on apple  in downward direction will also be less.

4 0
3 years ago
An RLC circuit is used in a radio to tune into the radio lagos fm Station broadcasting at 93.5Hz. The resistance is 15ohms and t
bazaltina [42]

The characteristics of the RLC circuit allow to find the result for the capacitance at a resonance of 93.5 Hz is:

  • Capacitance is C = 1.8 10⁻⁶ F

A series RLC circuit reaches the maximum signal for a specific frequency, called the resonance frequency, this value depends on the impedance of the circuit.

            Z^2 = R^2 + ( wL - \frac{1}{wC} )^2  

Where Z is the impedance of the circuit, R the resistance, L the inductance, C the capacitance and w the angular velocity. The negative sign is due to the fact that the current in the capacitor and the inductor are out of phase.

In the case of resonance, the impedance term completes the circuit as a resistive system.

           wL - \frac{1}{wC} = 0  \\w^2 = \frac{1}{LC}  

           

Indicate that the inductance L = 1.6 H and the frequency f = 93.5 Hz.

Angular velocity and frequency are related.

         

         w = 2π f

           

Let's  substitute.

          C = \frac{1}{L ( 2 \pi f)^2 }  

 

Let's calculate.

         C = \frac{1}{1.6 \ ( 2\pi \ 93.5)^2}  

         C = 1.8 10⁻⁶ F

In conclusion with the characteristics of the RLC circuits we can find the result for the capacitance at a 93.5 Hz resonance is:

  • Capacitance is C = 1.8 10⁻⁶ F

Learn more about serial RLC circuits here: brainly.com/question/15595203

4 0
2 years ago
Calculate the specific heat at constant volume of water vapor, assuming the nonlinear triatomic molecule has three translational
vampirchik [111]

Answer:

I) c=1385.667\frac{J}{kg K}

II)The difference from the value obtained on part I is: 2000-1385.67 =614.33 \frac{J}{Kg K}

The possible reason of this difference is that the vibrational motion can increase the value, since if we take in count this factor we will have a higher heat capacity, because molecules with vibrational motion require more heat to vibrate and necessary higher specific heat capacity.

Explanation:

From the problem we have the molar mass given M=18\frac{gr}{mol} of water vapor and at constant volume condition. It's important to say that the vapour molecules have 3 transitionsl and 3 rotational degrees of freedom and the rotational motion no contribution.

Part I

Calculate the specific heat at constant volume of water vapor, assuming the nonlinear triatomic molecule has three translational and three rotational degrees of freedom and that vibrational motion does not contribute. The molar mass of water is 18.0 g/mol=0.018kg/mol.

Let C_v (\frac{J}{Kg K}) the molar heat capacity at constant volume and this amount represent the quantity of heat absorbed by mole.

Let C (\frac{J}{Kg K}) the specific heat capcity this value represent the heat capacity aboserbed by mass.

For the problem we have a total of 6 degrees of freedom and from the thoery we know that for each degree of freedom the molar heat capacity at constant volume is given by C_v =\frac{R}{2} so the total for the 6 degrees of freedom would be:

C_v =6*\frac{R}{2}=3R=3x8.314\frac{J}{mol K}=24.942\frac{J}{mol K}

And by definition we know that the specific heat capacity is defined:

c=\frac{C_V}{M}

If we replace all the values we have:

c=\frac{24.942\frac{J}{mol K}}{0.018\frac{kg}{mol}}=1385.667\frac{J}{kg K}

So on this case the specific heat capacity with constant volume and with three translational and three rotational degrees of freedom is c=1385.667\frac{J}{kg K}

Part II

The actual specific heat of water vapor at low pressures is about 2000 J/(kg * K). Compare this with your calculation.

The difference from the value obtained on part I is: 2000-1385.67 =614.33 \frac{J}{Kg K}

The possible reason of this difference is that the vibrational motion can increase the value, since if we take in count this factor we will have a higher heat capacity, because molecules with vibrational motion require more heat to vibrate and necessary higher specific heat capacity.

4 0
3 years ago
Which vector best represents the force that could act concurrently with force A to produce force B
viva [34]
Chose answer 2

cheers

8 0
3 years ago
A long solenoid of radius 3 cm has 1100 turns per meter. If the solenoid carries a current of 1.5 A, then calculate the magnetic
Arada [10]

Answer:

The magnetic field at the center of the solenoid is 2.1  × 10⁻³ T

Explanation:

The magnetic field B at the center of the solenoid is given by

B = μ₀ni where μ₀ = permeability of free space = 4π × 10⁻⁷H/m, n = number of turns per unit length of the solenoid = 1100 turns per meter and i = current in the solenoid = 1.5 A.

So B = μ₀ni

= 4π × 10⁻⁷H/m × 1100 × 1.5 A

= 4π × 10⁻⁷H/m × 1650 A-turns/m

= 20734.5 × 10⁻⁷T  

= 2.07345 × 10⁻³ T

≅ 2.1  × 10⁻³ T

So the magnetic field at the center of the solenoid is 2.1  × 10⁻³ T

3 0
3 years ago
Other questions:
  • The spring of a toy car stores 10 J of potential energy. Only 8 J of energy changes to kinetic energy as the car moves. What hap
    10·1 answer
  • What is a factor that does not change because other values have changed?
    10·1 answer
  • Projectile <br> SHOW WORK<br> WILL MARK BRANLIEST <br> (Draw Picture and Label)
    6·1 answer
  • Identify which type of source is being described.
    10·2 answers
  • Which of the following explains the transfer of heat between two objects? A. flow of temperature from one object to the other B.
    7·1 answer
  • An elemental trip through europe
    13·1 answer
  • Call 7744882898 ::::::
    9·1 answer
  • Scientific investigations
    15·1 answer
  • If you shine a light of frequency 375hz on a double slit setup , and you measure the slit separation to be 950 nm and the screen
    15·1 answer
  • Which action is not an example of work?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!