Wavelength = (speed) / (frequency)
Wavelength = (8 m/s) / (2/s)
Can you finish it off from this point ?
Answer:
The magnitude of the magnetic torque on the loop when the plane of its area is perpendicular to the magnetic field is 0.4713 J
Explanation:
Given;
radius of the circular loop of wire = 0.5 m
current in circular loop of wire = 2 A
strength of magnetic field in the wire = 0.3 T
τ = μ x Bsinθ
where;
τ is the magnitude of the magnetic torque
μ is the dipole moment of the magnetic field
θ is the inclination angle, for a plane area perpendicular to the magnetic field, θ = 90
μ = IA
where;
I is current in circular loop of wire
A is area of the circular loop = πr² = π(0.5)² = 0.7855 m²
μ = 2 x 0.7885 = 1.571 A.m²
τ = μ x Bsinθ = 1.571 x 0.3 sin(90)
τ = 0.4713 J
Therefore, the magnitude of the magnetic torque on the loop when the plane of its area is perpendicular to the magnetic field is 0.4713 J
<span>Breaking down is an emergency situation.
If your vehicle breaks down pull off the roadway, and if possible, park so that your vehicle can be seen for 200 feet in each direction.You should also m</span>ove the vehicle so all four wheels are off the pavement and turn on the emergency flashers. If there are other passengers in the car they should all get out <span>on the side away from traffic.</span>
Answer:
R=0.5B+0.5C+2A+D
Explanation:
By the triangular law of vector addition
vector R= vector B- vector D
As A,B,C,D are edges of the parallelogram,
A is parallel to D but opposite in direction.
Therefore
;
;

B is parallel to C and in same direction.



The moment of a couple is Force × perpendicular distance from the arm of the line of action
so the arm of the couple= moment of couple/force=8.5/34=0.25m
the arm is 0.25m