<span>
Plan: Use Q = m · c · ΔT three times. Hot casting cools ΔT_hot = 500°C -
Tf. Cold water and steel tank heat ΔT_cold = Tf - 25°C. Set Q from hot
casting cooling = Q from cold tank heating.
here
m_cast · c_steel · ΔT_hot = (m_tank · c_steel + m_water · c_water) · ΔT_cold
m_cast · c_steel · (500°C - Tf) = (m_tank · c_steel + m_water · c_water) · (Tf - 25°C)
2.5 kg · 0.50 kJ/(kg K°) · (500°C - Tf) = (5 kg· 0.50 kJ/(kg K°) + 40 kg· 4.18 kJ/(kg K°)) · (Tf - 25°C)
Solve for Tf, remember that K° = C° (i.e. for ΔT's) </span>
D. A bimetallic strip bends so that the steel is on the outside curve.
Answer:
C) three times slow than on earth
Highest energy photon absorbed: 
Explanation:
An atom is said to be (positively) ionised when it absorbs a photon, and as a consequence, an electron becomes energetic enough to escape the atom, leaving an excess of positive charge behind.
In order for the electron to escape, the energy of the absorbed photon must be exactly equal to the (negative) energy of the level in which the electron lies.
For an hydrogen atom, the energy levels are given by

where this energy is measured in electronvolts, and n is the number of the energy level.
Since the energy is negative, this means that the electron which requires most energy is the one lying in the ground state (n=1). Therefore, for an electron in the ground state, the most energy that can be absorbed from the incoming photon is

Converting into Joules, this is equal to

Learn more about hydrogen atom:
brainly.com/question/2757829
#LearnwithBrainly
Answer: it’s A and B
Explanation: everyone else on this post was giving you the wrong answer.