Answer:
12164.4 Nm
Explanation:
CHECK THE ATTACHMENT
Given values are;
m1= 470 kg
x= 4m
m2= 75kg
Cm = center of mass
g= acceleration due to gravity= 9.82 m/s^2
The distance of centre of mass is x/2
Center of mass(1) = x/2
But x= 4 m
Then substitute, we have,
Center of mass(1) = 4/2 = 2m
We can find the total torque, through the summation of moments that comes from both the man and the beam.
τ = τ(1) + τ(2)
But
τ(1)= ( Center of m1 × m1 × g)= (2× 470× 9.81)
= 9221.4Nm
τ(2)= X * m2 * g = ( 4× 75 × 9.81)= 2943Nm
τ = τ(1) + τ(2)
= 9221.4Nm + 2943Nm
= 12164.4 Nm
Hence, the magnitude of the torque about the point where the beam is bolted into place is 12164.4 Nm
Answer:
=24.25 ^−1
Explanation:
Let and be initial and final velocity of the body respectively,
be acceleration due to gravity ( 9.8^−2 ), ℎ be the height of the body.
=0 ^ −1
ℎ=30
we know that, ^2−^ 2=2ℎ
^2=2∗9.8∗30
^2=588
=24.25 ^−1
2) Unbalanced. Mike will push the box with a force of 20 N. The forces would be balanced if the box responded with 30 N.
3) Balanced. Both boys are pulling with the same force. Neither is winning.
4) Unbalanced. The rope will move with 10 N to the west. The teachers are winning.
5) Unbalanced. The kids are pulling 220 N to the east. The kids are winning.
6) Balanced. You and the dog are pulling with the same force.
Answer:
112 m/s², 79.1°
Explanation:
In the x direction, given:
x₀ = 0 m
x = 19,500 cos 32.0° m
v₀ = 1810 cos 20.0° m/s
t = 9.20 s
Find: a
x = x₀ + v₀ t + ½ at²
19,500 cos 32.0° = 0 + (1810 cos 20.0°) (9.20) + ½ a (9.20)²
a = 21.01 m/s²
In the y direction, given:
y₀ = 0 m
y = 19,500 sin 32.0° m
v₀ = 1810 sin 20.0° m/s
t = 9.20 s
Find: a
y = y₀ + v₀ t + ½ at²
19,500 sin 32.0° = 0 + (1810 sin 20.0°) (9.20) + ½ a (9.20)²
a = 109.6 m/s²
The magnitude of the acceleration is:
a² = ax² + ay²
a² = (21.01)² + (109.6)²
a = 112 m/s²
And the direction is:
θ = atan(ay / ax)
θ = atan(109.6 / 21.01)
θ = 79.1°