Answer:
Option A. 39.2 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 4 s
Final velocity (v) =?
v = u + gt
Since the initial velocity (u) is 0, the above equation becomes:
v = gt
Thus, inputting the value of g and t, we can obtain the value of v as shown below:
v = 9.8 × 4
v = 39.2 m/s
Therefore, the velocity of the ball at 4 s is 39.2 m/s.
To find work, you use the equation: W = Force X Distance X Cos (0 degrees)
Following the Law of Conservation of Energy, energy cannot be destroyed nor created.
So you would do 75 N x 10m x Cos (0 degrees)= 750 J
Answer:
a) t = 4.16 s
b) x = 141.51 m
Explanation:
Given
v = 21.5 m/s
x0 = 52.0 m
a = 6.0 m/s²
a) Motorcycle
x = v0*t + (a*t²/2)
x = 21.5t + (6*t²/2)
x = 21.5t + 3t² <em>(I)</em>
Car
x = x0 + v0*t
x = 52 + 21.5t <em>(II)</em>
<em />
then we can apply <em>I = II</em>
21.5t + 3t² = 52 + 21.5t
⇒ 3t² = 52
⇒ t = 4.16 s
b) We can use <em>I</em> or <em>II</em>, then
x = 52 + 21.5*(4.16)
⇒ x = 141.51 m
Answer:
Newton, absolute unit of force in the International System of Units (SI units), abbreviated N. It is defined as that force necessary to provide a mass of one kilogram with an acceleration of one metre per second per second.
The inner planets are the planets before the asteroid belt. They are also closer to the Sun. The outer planets are the ones after the asteroid belt. <span />