Answer:
z=kx/y
zy=kx
zy/x=kx/x ( divided both side by x. to find k)
k=zy/x
k=6×4/3(z=6,y=4,x=3)
k=24/3
k=8
so z=kx/y
z=8×5/2(replace the numbers in the place of variables,k=8,x=5,y=2)
z=40/2
z=20
Answer:
R(x) = 8999.93x
Step-by-step explanation:
The original price is $9000 per unit. The unit is x, so if you buy x units, you pay 9000x.
The original price function is
R(x) = 9000x
The discount is 7 cents per unit bought, so if you buy x units, the discount is 9x in cents, or 0.09x in dollars. This discount is subtracted from the original price, so the discounted price is
R(x) = 9000x - 0.07x
R(x) = 8999.93x
Answer: R(x) = 8999.93x
Answer:
The best and most correct answer among the choices provided by your question is the the first choice. We can conclude from the figure you specified that the "Points are graphed at negative 3 comma 2 and negative 1 comma negative 1". I hope my answer has come to your help.
Step-by-step explanation:
A: −3 over 2
I did this test b4, yours is answer #number 12
Convert things to their basic forms.
<span>Remember a few identities </span>
<span>sin^2 + cos^2 = 1 so </span>
<span>sin^2 = 1 - cos^2 and </span>
<span>cos^2 = 1 - sin^2 </span>
<span>I'm going to skip typing the theta symbol, just to make things faster. Just assume it is there and fill it in as you work the problems. </span>
<span>Follow along to see how each problem was worked out. You'll catch on to the general technique. </span>
<span>====== </span>
<span>1. sec θ sin θ </span>
<span>1/cos * sin = sin/cos = tan </span>
<span>2. cos θ tan θ </span>
<span>cos * sin/cos = sin </span>
<span>3. tan^2 θ- sec^2 θ </span>
<span>sin^2 / cos^2 - 1/cos^2 </span>
<span>(sin^2 - 1)/cos^2 </span>
<span>-(1-sin^2)/cos^2 </span>
<span>-cos^2/cos^2 </span>
<span>-1 </span>
<span>4. 1- cos^2θ </span>
<span>sin^2 </span>
<span>5. (1-cosθ)(1+cosθ) </span>
<span>Remember (a+b)(a--b) = a^2 - b^2 </span>
<span>1-cos^2 = sin^2 </span>
<span>6. (secx-1) (secx+1) </span>
<span>sec^2 -1 </span>
<span>1/cos^2 - 1 </span>
<span>1/cos^2 - cos^2/cos^2 </span>
<span>(1-cos^2)/cos^2 </span>
<span>sin^2/cos62 </span>
<span>tan^2 </span>
<span>7. (1/sin^2A)-(1/tan^2A) </span>
<span>1/sin^2 - 1/(sin^2/cos^2) </span>
<span>1/sin^2 - cos^2/sin^2 </span>
<span>(1-cos^2)/sin^2 </span>
<span>sin^2/sin^2 </span>
<span>1 </span>
<span>8. 1- (sin^2θ/tan^2θ) </span>
<span>1-sin^2/(sin^2/cos^2) </span>
<span>1 - sin^2*cos^2/sin^2 </span>
<span>1-cos^2 </span>
<span>sin^2 </span>
<span>9. (1/cos^2θ)-(1/cot^2θ) </span>
<span>1/cos^2 - 1/(cos^2/sin^2) </span>
<span>1/cos^2 - sin^2/cos^2 </span>
<span>(1-sin^2)/cos^2 </span>
<span>cos^2/cos^2 </span>
<span>1 </span>
<span>10. cosθ (secθ-cosθ) </span>
<span>cos *(1/cos - cos) </span>
<span>1-cos^2 </span>
<span>sin^2 </span>
<span>11. cos^2A (sec^2A-1) </span>
<span>cos^2 * (1/cos^2 - 1) </span>
<span>1 - cos^2 </span>
<span>sin^2 </span>
<span>12. (1-cosx)(1+secx)(cosx) </span>
<span>(1-cos)(1+1/cos)cos </span>
<span>(1-cos)(cos + 1) </span>
<span>-(cos-1)(cos+1) </span>
<span>-(cos^2 - 1) </span>
<span>-(-sin^2) </span>
<span>sin^2 </span>
<span>13. (sinxcosx)/(1-cos^2x) </span>
<span>sin*cos/sin^2 </span>
<span>cos/sin </span>
<span>cot </span>
<span>14. (tan^2θ/secθ+1) +1 </span>
<span>(sin^2/cos^2)/(1/cos) + 2 </span>
<span>sin^2/cos + 2 </span>
<span>sin*tan + 2 </span>
Answer: Second Option

Step-by-step explanation:
We have the following expression:

We have the following expression:
To solve the expression, apply the inverse of
on both sides of the equality.
Remember that:
So we have to:



The answer is the second option