Answer:
large, released
Explanation:
As we know, fireworks contain l o t s of energy, even before the burst of colors release. So i think choice 3 is the answer.
i hope this helps :)
Starting from the radon mass, add the mass of the electron, and subtract the mass attributable to the gamma radiation <u>(931 Mev = 1 amu).</u>
<u></u>
<h3>
What is gamma radiation?</h3>
Gamma radiation (gamma rays) refers to the part of the electromagnetic spectrum with the most energy and shortest wavelength. Astrophysicists define gamma radiation as any radiation with an energy above 100 keV. Physicists define gamma radiation as high-energy photons released by nuclear decay.
Using the broader definition of gamma radiation, gamma rays are released by sources including gamma decay, lightning, solar flares, matter-antimatter annihilation, the interaction between cosmic rays and matter, and many astronomical sources. Gamma radiation was discovered by Paul Villard in 1900.
Gamma radiation is used to study the universe, treat gemstones, scan containers, sterilize foods and equipment, diagnose medical conditions, and treat some forms of cancer.
Learn more about gamma radiation
brainly.com/question/20799041
#SPJ4
Answer:
c. F1-
Explanation:
In this chemical reaction the expression is:
HF + NaF → NaHF2
The ion that always keep the negative charge is the fluorine with a -1, if in this mixture there is more positive ions (H1+) the negative ion (F1-) will join with them.
Remember that also the Cl1- will be free, but the fluorine is more reactive than the fluorine.
Answer:
91.1835 nm
Explanation:
Given that the ionization energy of the oxygen molecule = 1314 kJ/mol
It means that
1 mole of oxygen molecules can be ionized by the energy = 1314 kJ = 1314000 J
1 mole of molecules contains 6.022 × 10²³ atoms
So,
6.022 × 10²³ atoms of oxygen molecules can be ionized by the energy = 1314000 J
1 atom require
of energy
Energy = 
Also
Where,
h is Plank's constant having value
c is the speed of light having value 
is the wavelength
So,
Also,
So, wavelength = 91.1835 nm