Hertz is units for frequency. (waves per second)
wavelength = speed/frequency
if you're given the speed use that to calculate, if not then you can probably assume it's a wave of light and use the speed of light (3x10^8 m/s) to calculate.
wavelength = (3x10^8)/(1.28x10^17)
= 0.000000002 m
= 2.34 nm
dinosaur footprint
Explanation:
A dinosaur footprint is an example of a trace fossil. A trace fossil is a type of fossil that shows the activities of organisms that lived in the past.
- Fossils are the preserved remains of organisms that lived several years ago.
- Fossils are usually found in sedimentary rocks and thick layers of ice in temperate and polar regions.
- Body fossils are the remains of the body parts of an organism that has been preserved. They can be skeletal parts, teeth, eggs e.t.c
- A trace fossil shows the preserved remains of the activities of an organism.
- They can be fingerprints, burrows and borings, feccal pellets e.t.c
Learn more":
fossils and evolution brainly.com/question/12790206
#learnwithBrainly
Diamond and graphite are made of carbon. So is most of charcoal.
Answer:
find the number of moles of solute dissolved in solution
,
find the volume of solution in liters,
then divide moles solute by liters solution
Explanation:
<u>Answer:</u> The standard enthalpy change of the reaction is coming out to be -16.3 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_f_{(MgCl_2(s))})+(2\times \Delta H_f_{(H_2O(g))})]-[(1\times \Delta H_f_{(Mg(OH)_2(s))})+(2\times \Delta H_f_{(HCl(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28MgCl_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Mg%28OH%29_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCl%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-641.8))+(2\times (-241.8))]-[(1\times (-924.5))+(2\times (-92.30))]\\\\\Delta H_{rxn}=-16.3kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-641.8%29%29%2B%282%5Ctimes%20%28-241.8%29%29%5D-%5B%281%5Ctimes%20%28-924.5%29%29%2B%282%5Ctimes%20%28-92.30%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-16.3kJ)
Hence, the standard enthalpy change of the reaction is coming out to be -16.3 kJ