Considering the following;
I. Heat is not readily available to all living cells.
II. Heat at excessive amounts denatures proteins.
III. Heat does not provide the activation energy for their reactions.
IV. When a critical temperature is reached, proteins no longer function
Answer;
I and IV
Explanation;
Living cells cannot use heat to provide the activation energy for biochemical reactions because heat is not readily available to all living cells and also when a critical temperature is reached, proteins no longer function.
Too much heat can kill an organism by rendering its organelles, cells, tissues and organs permanently inoperable and un-salvageable. The same process can be observed in tissues at low temperatures, and is the cause of frostbite. This is because enzymes are denatured by high temperature and inactivated by low.
Answer:
The shape of the enzyme determines which chemical reaction it will speed up.May strain the bonds of the substrate or put chemical groups of the active site in the correct position to speed up the reaction.
Answer: (A) The isolated chloroplasts will make ATP
Explanation:
The Thylakoid will receive hydrogen from the acid which is pumped across the thylakoid membrane, and the electrochemical proton synthesis of ATP begins in the stroma. Once the chloroplast has been transferred to the dark, high-energy electrons are loaded together with (H+) onto NADP+, converting it to NADPH.
Answer:
read the explanation.
Explanation:
Both are enzymes, both has active sites because they are enzymes. A difference is that serine proteases has serine aminoacids in it active site. The aspartic proteases has an activated water molecule bond to one or more aspartate aminoacid in its active site.
Serine proteases are two main kinds, chymotrypsin and subtilisin kind. Aspartic proteases are three main kinds, pepsin, cathepsin and renins.
Serine proteases are found either in eukaryotes and prokaryotes, meanwhile the aspartic proteases are found mainly in eukaryotes as molds and yeast but rarely in prokaryotes such as bacteria.
Hope this info is useful.
Answer: Lunar dust is made up of silicates
Explanation: 42% oxygen
21% silicon
13% iron
8% calcium
7% aluminium
6% magnesium