Answer:
74.86% probability that a component is at least 12 centimeters long.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Variance is 9.
The standard deviation is the square root of the variance.
So

Calculate the probability that a component is at least 12 centimeters long.
This is 1 subtracted by the pvalue of Z when X = 12. So



has a pvalue of 0.2514.
1-0.2514 = 0.7486
74.86% probability that a component is at least 12 centimeters long.
Answer:
0.069
Step-by-step explanation:
6.9 ×10^-2
69/1000
0.069
The answer is to the problem is 120 °
In this case 'g' would be 5 - 7f
Answer:
because it has the same angle