Answer:
4 Blue chips
6 Yellow chips
10 Red chips
Imagine 20% as 2 of 10. We have 20 chips, and that's double of that. So if we have 2/10... we will have 4/20
Same with the yellow chips. Imagine 30% as 3 of 10, again double that... 6/20.
It doesn't directly say the percent of design a computer representation but we can infer that if we have 20% and 30%... that makes 50%, there is only 100 in a percent, so that means there is 50% left! We repeat the process where we envision 50% as 5 of 10, double that. Now we have 10 of 20, 50%!
Answer:
i think it's c
Step-by-step explanation:
a. <u>2</u><u>/</u><u>1</u><u>00</u><u> </u><u>×</u><u> </u><u>1</u><u>5</u><u>0</u><u>=</u><u> </u><u>3</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>b</u><u>. </u><u> </u><u>100×</u><u>4</u><u>0</u><u>0</u><u>=</u><u>4</u><u>0</u><u>0</u><u>0</u><u>0</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u>c</u><u>. </u><u> </u><u> </u><u>6</u><u>/</u><u>100 </u><u>×</u><u>6</u><u>0</u><u>=</u><u> </u><u>1</u><u>.</u><u>2</u><u> </u><u>×</u><u>3</u><u>=</u><u>3</u><u>.</u><u>6</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>d</u><u>. </u><u>6</u><u>9</u><u>×</u><u>5</u><u>0</u><u>=</u><u>3</u><u>4</u><u>0</u><u>0</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>so </u><u>answer</u><u> </u><u>c</u><u>. </u><u> </u><u> </u><u> </u><u> </u><u> </u>
Answer:
ight bet so if 2 and 2 is 4
Answer: The answers for both (a) and (b) is YES.
Step-by-step explanation: A polynomial is an algebraic expression containing two or more algebraic terms, i.e., the sum of several terms that contain different powers of the same variable or variables with real coefficients.
For example, p(x) = 4x²+x+2 is a polynomial in variable 'x'.
(a) Yes, the sum of two polynomials is again a polynomial. For example,
if p(x) = ax² + bx + c and q(x) = dx² + ex + f, where, a, b, c, d, e and f are real numbers, then their sum will be
p(x) + q(x) = (a+d)x²+(b+e)x+(c+f), which is again a polynomial in 'x' with real coefficients.
(b) Yes, the difference of two polynomials is again a polynomial. For example,
p(x) - q(x) = (a-d)x²+(b-e)x+(c-f), which is again a polynomial in 'x' with real coefficients.
Thus, the answer is YES.
Answer:
6 you are welcome I hope this helps