Answer:
0.375
Step-by-step explanation:
Answer:
2. a and b only.
Step-by-step explanation:
We can check all of the given conditions to see which is true and which false.
a. f(c)=0 for some c in (-2,2).
According to the intermediate value theorem this must be true, since the extreme values of the function are f(-2)=1 and f(2)=-1, so according to the theorem, there must be one x-value for which f(x)=0 (middle value between the extreme values) if the function is continuous.
b. the graph of f(-x)+x crosses the x-axis on (-2,2)
Let's test this condition, we will substitute x for the given values on the interval so we get:
f(-(-2))+(-2)
f(2)-2
-1-1=-3 lower limit
f(-2)+2
1+2=3 higher limit
according to these results, the graph must cross the x-axis at some point so the graph can move from f(x)=-3 to f(x)=3, so this must be true.
c. f(c)<1 for all c in (-2,2)
even though this might be true for some x-values of of the interval, there are some other points where this might not be the case. You can find one of those situations when finding f(-2)=1, which is a positive value of f(c), so this must be false.
The final answer is then 2. a and b only.
Answer:
6:11
Step-by-step explanation:
Answer:
- Josh's book lands first
- Ben's lands about 0.648 seconds later
Step-by-step explanation:
Using the given equation for v=60 and s=40, the height of Ben's book is ...
h(t) = -16t² +60t +40
We want to find t when h(t) = 0, so we're looking for the solution to ....
0 = -16t² +60t +40
Using the quadratic formula, we find the positive value of t to be ...
t = (-60 -√(60² -4(-16)(40)))/(2(-16)) = (15 +√385)/8 ≈ 4.3277
__
Similarly, the height of Josh's book is ...
0 = -16t² +48t +40
t = (-48 -√(48² -4(-16)(40)))/(2(-16)) = (12 +√304)/8 ≈ 3.6794
__
The time before Josh's book lands is shorter by ...
4.3277 -3.6794 ≈ 0.6482 . . . . . seconds
Josh's book reaches the ground first, by about 0.648 seconds.