Answer:
the solution of the system is:
x = 1 and y = 2.
Step-by-step explanation:
I suppose that we want to solve the equation:
-6*x + 6*y = 6
6*x + 3*y = 12
To solve this, we first need to isolate one of the variables in one of the equations.
Let's isolate y in the first equation:
6*y = 6 + 6*x
y = (6 + 6*x)/6
y = 6/6 + (6*x)/6
y = 1 + x
Now we can replace this in the other equation:
6*x + 3*(1 + x) = 12
6*x + 3 + 3*x = 12
9*x + 3 = 12
9*x = 12 - 3 = 9
x = 9/9 = 1
Now that we know that x = 1, we can replace this in the equation "y = 1 + x" to find the value of y.
y = 1 + (1) = 2
Then the solution of the system is:
x = 1 and y = 2.
Answer:
x=-2
Step-by-step explanation:
Hey there!
In order to solve this equation, you need to combine like terms
The equation after combining the x terms and the contants will look like this
10x+3=12x+7
Now you have to take 10x away from both sides
3=2x+7
Now bring all the constants to the left side
3-7=2x
Simplify
-4=2x
divide 2 on both sides to get x by itself
x=-2
So, the answer is x=-2
I’m pretty sure it’s the first one cause it’s half of the 6 blocks
Hello!
First you can distribute the 3
4 + 6r + 6s + 3r
Then you combine like terms
4 + 9r + 6s
The answer is 9r + 6s + 4
Hope this helps!
If the given differential equation is

then multiply both sides by
:

The left side is the derivative of a product,
![\dfrac{d}{dx}\left[\sin(x)y\right] = \sec^2(x)](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Csin%28x%29y%5Cright%5D%20%3D%20%5Csec%5E2%28x%29)
Integrate both sides with respect to
, recalling that
:
![\displaystyle \int \frac{d}{dx}\left[\sin(x)y\right] \, dx = \int \sec^2(x) \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Csin%28x%29y%5Cright%5D%20%5C%2C%20dx%20%3D%20%5Cint%20%5Csec%5E2%28x%29%20%5C%2C%20dx)

Solve for
:
.