Answer:
If there are 5000 bacteria in a colony right now, there will be 5000x2, or 10000 bacteria in the colony in 37 minutes.
If there are 10000 bacteria in the colony in 37 minutes, there will be 20000 bacteria in the colony in 74 minutes, as the bacteria doubles every 34 minutes.
Let me know if this helps!
The greatest possible temperature is
and least possible temperature is 
<u>Solution:</u>
Given that according to weather forecaster the temperature will be about -5 degree celsius given or take 10 degree”
Need to determine greatest possible temperature and least possible temperature.
Give and take in given statement means a temperature can go up by 10 degrees and can go down by 10 degrees
So greatest possible temperature will be 
Least possible temperature will be 
Hence according to weather forecaster, greatest possible temperature =
and least possible temperature = 
Answer:
![W=\{\left[\begin{array}{ccc}a+2b\\b\\-3a\end{array}\right]: a,b\in\mathbb{R} \}](https://tex.z-dn.net/?f=W%3D%5C%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%2B2b%5C%5Cb%5C%5C-3a%5Cend%7Barray%7D%5Cright%5D%3A%20a%2Cb%5Cin%5Cmathbb%7BR%7D%20%5C%7D)
Observe that if the vector
is in W then it satisfies:
![\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{c}a+2b\\b\\-3a\end{array}\right]=a\left[\begin{array}{c}1\\0\\-3\end{array}\right]+b\left[\begin{array}{c}2\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Da%2B2b%5C%5Cb%5C%5C-3a%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
This means that each vector in W can be expressed as a linear combination of the vectors ![\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}2\\1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%2C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Also we can see that those vectors are linear independent. Then the set
is a basis for W and the dimension of W is 2.
Answer:
(- 1, 1 )
Step-by-step explanation:
Given the 2 equations
2x - y = - 3 → (1)
x + y = 0 → (2)
Adding the 2 equations term by term will eliminate the term in y, that is
3x = - 3 ( divide both sides by 3 )
x = - 1
Substitute x = - 1 into either of the 2 equations and solve for y
Substituting into (2)
- 1 + y = 0 ( add 1 to both sides )
y = 1
Solution is (- 1, 1 )