Answer: 
Explanation:
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= 
= activation energy for the reaction = 262 kJ/mol = 262000J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get
![\log (\frac{6.1\times 10^{-8}}{K_2})=\frac{262000}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{775.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B6.1%5Ctimes%2010%5E%7B-8%7D%7D%7BK_2%7D%29%3D%5Cfrac%7B262000%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B600.0K%7D-%5Cfrac%7B1%7D%7B775.0K%7D%5D)


Therefore, the value of the rate constant at 775.0 K is 
Answer:
The concentration of the copper sulfate solution is 83 mM.
Explanation:
The absorbance of a copper sulfate solution can be calculated using Beer-Lambert Law:
A = ε . c . <em>l</em>
where
ε is the extinction coefficient of copper sulfate (ε = 12 M⁻¹.cm⁻¹)
c is its molar concentration (what we are looking for)
l is the pathlength (0.50 cm)
We can use this expression to find the molarity of this solution:

Answer is: elements are always combined in the same proportion by mass.
Law of multiple proportions or Dalton's Law said that the ratios of the masses of the second element which combine with a fixed mass of the first element will be ratios of small whole numbers.
For example, nitrogen(I) oxide N₂O; m(N) : m(O) = 2·14 : 16 = 7 : 4.
Another example, water (H₂O) is made of two hydrogen atoms and one oxygen atom:
m(H) : m(O) = 2·1 : 16 = 1: 8.
<h2>The required "options are (II), (III), and (IV)".</h2>
Explanation:
Postulates of Dalton's atomic theory which are scientifically accepted are:
- Atoms are indestructible.
- Compounds are combinations of different atoms.
- A chemical reaction changes the way atoms are grouped together.
Postulates of Dalton's atomic theory which are not accepted scientifically are:
- All atoms of the same elements are identical.
The theory states that the atoms of the same element are identical in every aspect but it is now scientifically proved that the same element should differ in their mass which is known as isotopes.