Answer:
4.35 * 10^-8 M
Explanation:
Since the concentration of the hydronium ion= 2.3 X 10^-7 M
And we know that;
[H3O^+] [OH^-] = 1 * 10^-14
[H3O^+] = concentration of the hydronium ion
[OH^-] = concentration of the hydroxide ion
So;
[OH^-] =1 * 10^-14/[ H3O^+]
But [H3O^+] = 2.3 X 10^-7 M
[OH^-] = 1 * 10^-14/2.3 X 10^-7
[OH^-] = 4.35 * 10^-8 M
Answer:
0.52 L.
Explanation:
Let P be the initial pressure.
From the question given above, the following data were obtained:
Initial pressure (P1) = P
Initial volume (V1) = 1.04 L
Final pressure (P2) = double the initial pressure = 2P
Final volume (V2) =?
The new volume (V2) of the gas can be obtained by using the the Boyle's law equation as shown below:
P1V1 = P2V2
P × 1.04 = 2P × V2
1.04P = 2P × V2
Divide both side by 2P
V2 = 1.04P /2P
V2 = 0.52 L
Thus, the new volume of the gas is 0.52 L.
State functions include density, internal energy, enthalpy, entropy. Such a relation cannot be written for path functions, especially since these cannot be defined for the limiting states. Path functions depend on the route taken between two states. Two examples of path functions are heat and work.
Answer:
518.52K
Explanation:
Charles law, which describes the direct relationship between the volume and the temperature of a gas when the pressure is constant, will be used for this question. The Charles law equation is:
V1/T1 = V2/T2
Where; V1 is the volume of the gas at an initial state (Litres)
T1 is the absolute temperature of the gas at an initial state (Kelvin)
V2 is the volume of the gas at a final state (Litres)
T2 is the absolute temperature of the gas at a final state (Kelvin)
According to the question, V1 = 2.3L, T1 = 25°C, V2 = 4L, T2 = ?
We need to convert the temperature to the absolute temperature unit in Kelvin (K) i.e.
T(K) = T(°C) + 273.15
T(K) = 25°C + 273.15
T1 (K) = 298.15K
To find for T2 in the equation, we make T2 the subject of the formula:
T2 = V2 × T1 / V1
T2 = 4 × 298.15 / 2.3
T2 = 1192.6/2.3
T2 = 518.52
Thus, the temperature must be heated to 518.52K in order to expand to a volume of 4L. This answer is in accordance to Charles law that the volume increases with increase in temperature and vice versa.