Answer:
x=4
Step-by-step explanation:
Answer:
50.24 yards²
Step-by-step explanation:
The equation for area of circle is πr². So the calculation is 4² × 3.14.
16 × 3.14 = 50.24
Answer:
![Area = 26478cm^2](https://tex.z-dn.net/?f=Area%20%3D%2026478cm%5E2)
Step-by-step explanation:
Given
See attachment for desk
Required
The area
First, calculate the area of the semicircular cutout
![Area = \frac{\pi r^2}{2}](https://tex.z-dn.net/?f=Area%20%3D%20%5Cfrac%7B%5Cpi%20r%5E2%7D%7B2%7D)
Where
![r = 60cm](https://tex.z-dn.net/?f=r%20%3D%2060cm)
So:
![A_1 = \frac{3.14 * 60^2}{2}](https://tex.z-dn.net/?f=A_1%20%3D%20%5Cfrac%7B3.14%20%2A%2060%5E2%7D%7B2%7D)
![A_1 = \frac{11304}{2}](https://tex.z-dn.net/?f=A_1%20%3D%20%5Cfrac%7B11304%7D%7B2%7D)
![A_1 = 5652cm^2](https://tex.z-dn.net/?f=A_1%20%3D%205652cm%5E2)
Next, the area of the complete trapezium
![Area= \frac{1}{2}(a + b) * h](https://tex.z-dn.net/?f=Area%3D%20%5Cfrac%7B1%7D%7B2%7D%28a%20%2B%20b%29%20%2A%20h)
Where
![a = 300](https://tex.z-dn.net/?f=a%20%3D%20300)
![b = 2 * r = 2 * 60 = 120](https://tex.z-dn.net/?f=b%20%3D%202%20%2A%20r%20%3D%202%20%2A%2060%20%3D%20120)
![h = 153](https://tex.z-dn.net/?f=h%20%3D%20153)
So:
![A_2 = \frac{1}{2} * (300 + 120) * 153](https://tex.z-dn.net/?f=A_2%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20%28300%20%2B%20120%29%20%2A%20153)
![A_2 = \frac{1}{2} * 420 * 153](https://tex.z-dn.net/?f=A_2%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20420%20%2A%20153)
![A_2 = 32130cm^2](https://tex.z-dn.net/?f=A_2%20%3D%2032130cm%5E2)
The area of the desk is:
![Area = A_2 - A_1](https://tex.z-dn.net/?f=Area%20%3D%20A_2%20-%20A_1)
![Area = 32130cm^2 - 5652cm^2](https://tex.z-dn.net/?f=Area%20%3D%2032130cm%5E2%20-%205652cm%5E2)
![Area = 26478cm^2](https://tex.z-dn.net/?f=Area%20%3D%2026478cm%5E2)
Answer:
Your answer choice is correct.
Step-by-step explanation:
The length of the semicircle is ...
s = π·r = π(4 in)
The three sides of the rectangular section total ...
9 in + 8 in + 9 in = 26 in
The sum of these lengths make up the perimeter of the figure:
P = 4π in + 26 in
P = (4π +26) in