Cr2(SO4)3(aq) + 3(NH4)2CO3(aq) → 3(NH4)2SO4(aq) + Cr2(CO3)3(s)
<span>Ionic: 2Cr+3 + 3SO4^-2 + 6NH4+ + 3CO3^-2 ----> 6NH4+ + 3SO4^-2 + Cr2(CO3)3 (spectator ions are NH4+, SO4^-2) </span>
<span>Net Ionic: 2Cr^+3(aq) + 3CO3^-2(aq) -------> Cr2(CO3)3(s) </span>
The first one is 2
The second is 1
The third is 6
And the fourth is 3
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
Lavoisier is known as the “Father of Modern Chemistry” or the “Father of Chemistry”.
He is famous for isolating oxygen and establishing the law of conservation of mass.
Objects in the fountain appear to be somewhere but isnt