Answer:
(a <em><u>s</u></em><em><u>q</u></em><em><u>u</u></em><em><u>a</u></em><em><u>r</u></em><em><u>e</u></em><em><u> </u></em><em><u>+</u></em><em><u>7</u></em><em><u>a</u></em><em><u>+</u></em><em><u>1</u></em><em><u>2</u></em><em><u>)</u></em><em><u> </u></em><em><u>÷</u></em><em><u>(</u></em><em><u>a</u></em><em><u>+</u></em><em><u>3</u></em><em><u>)</u></em>
Answer:
Step-by-step explanation:
a = 5b-10
a+b = 26
(5b-10)+b = 26
b = 6
a= 5b + 10 = 40
…………………………………………….not really sure about the last question
Answer with explanation:

--------------------------------------------------------Dividing both sides by 8 x
This Integration is of the form ⇒y'+p y=q,which is Linear differential equation.
Integrating Factor
Multiplying both sides by Integrating Factor
![x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\times [y'+y\times\frac{1+4x^2}{8x}]=\frac{1}{8}\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\\\\ \text{Integrating both sides}\\\\y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\frac{1}{8}\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx \\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=-[x^{\frac{9}{8}}]\times\frac{ \Gamma(0.5625, -x^2)}{(-x^2)^{\frac{9}{16}}}\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=(-1)^{\frac{-1}{8}}[ \Gamma(0.5625, -x^2)]+C-----(1)](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%5Ctimes%20%5By%27%2By%5Ctimes%5Cfrac%7B1%2B4x%5E2%7D%7B8x%7D%5D%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%5C%5C%5C%5C%20%5Ctext%7BIntegrating%20both%20sides%7D%5C%5C%5C%5Cy%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Cint%20%7Bx%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%5Cint%20%7Bx%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%7D%20%5C%2C%20dx%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D-%5Bx%5E%7B%5Cfrac%7B9%7D%7B8%7D%7D%5D%5Ctimes%5Cfrac%7B%20%5CGamma%280.5625%2C%20-x%5E2%29%7D%7B%28-x%5E2%29%5E%7B%5Cfrac%7B9%7D%7B16%7D%7D%7D%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%28-1%29%5E%7B%5Cfrac%7B-1%7D%7B8%7D%7D%5B%20%5CGamma%280.5625%2C%20-x%5E2%29%5D%2BC-----%281%29)
When , x=1, gives , y=9.
Evaluate the value of C and substitute in the equation 1.
Answer with Step-by-step explanation:
Relationship between rotation and reflection:
In reflection, the pre-image gets flips across the same line.
whereas in rotation, the pre-image get spin around a point.
Rotations can be represented as two reflections i.e. the composition of reflections over two intersecting lines is always equal to rotation of that object.
In rotation, the object will get turned, this is turning some degree either clockwise or anti-clockwise.
Hence, rotation requires spinning and reflection requires flipping.