Answer:
The volume of the solid is the volume of the prism minus the volume of the cylinder.
For the cylinder, diameter = d = 4 cm
radius = d/2 = (4 cm)/2 = 2 cm
V = volume of prism - volume of cylinder
The volume of a prism is length times width times height.
The volume of a cylinder is pi times the square of the radius times the height.
V = LWH - (pi)r^2h
V = 6 cm * 6 cm * 15 cm - (pi)(2 cm)^2(15 cm)
V = 540 cm^3 - 60pi cm^3
V = (540 - 60pi) cm^3
Given :-
- a² - 2a - b² = 0
- 2b + 2ab = 0
To find :-
Solution :-
<u>Taking</u><u> </u><u>second</u><u> </u><u>equation</u><u>:</u><u>-</u>
- 2b + 2ab = 0
- 2b ( 1 + a ) = 0
- 2b = 0 or (1+a) = 0
- b = 0 , a = -1
<u>Substitute</u><u> </u><u>in </u><u>first </u><u>equation</u><u> </u><u>:</u><u>-</u><u> </u>
<u>When </u><u>b </u><u>=</u><u> </u><u>0</u><u> </u><u>,</u>
- a² - 2a - 0² = 0
- a² - a = 0
- a( a -1) =0
- a = 0 , 1
<u>When </u><u>a </u><u>=</u><u> </u><u>-</u><u>1</u><u> </u><u>,</u>
- (-1)² - 2*(-1) - b² = 0
- 1 + 2 - b² = 0
- b² = 3
- b = ±√3
<u>Answer </u><u>:</u><u>-</u><u> </u>
- a = 0,1 ; b = 0
- a = -1 , b = ±√3
Using a Graph we can determine the greatest area the rectangle can have using the midpoint between the two w-intercepts.
Six million, seven thousand and two hundred.