sin(2<em>x</em>) - sin(<em>x</em>) = 0
Expand the first term using the double angle identity:
2 sin(<em>x</em>) cos(<em>x</em>) - sin(<em>x</em>) = 0
Factor out sin(<em>x</em>) :
sin(<em>x</em>) (2 cos(<em>x</em>) - 1) = 0
This leaves you with 2 cases that can be solved separately:
sin(<em>x</em>) = 0 or 2 cos(<em>x</em>) - 1 = 0
sin(<em>x</em>) = 0 or cos(<em>x</em>) = 1/2
[<em>x</em> = 2<em>nπ</em> or <em>x</em> = <em>π</em> + 2<em>nπ</em>] or [<em>x</em> = <em>π</em>/6 + 2<em>nπ</em> or <em>x</em> = 5<em>π</em>/6 + 2<em>nπ</em>]
(where <em>n</em> is any integer)
Answer: 19 but yes
Step-by-step explanation:
Answer:
111 is a great place to be your friend
Step-by-step explanation:
I am not it to 3rd or 3rd to be friends
The answer is < RQO and < STV
Hope it helps
Good luck on your assignment ..