1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
antiseptic1488 [7]
3 years ago
12

Which of these would be an example of unbalanced forces?

Physics
2 answers:
masha68 [24]3 years ago
7 0

Your answer is:

D. A snowball picks up speed as it rolls down the mountain.

An unbalanced force is when 2 forces act on each other (they aren't equal and opposite). That makes them cause motion.

mylen [45]3 years ago
3 0

A snowball picks up speed as it rolls down the mountain.<em> (D)</em>

Since the description includes acceleration ("picks up speed"), we know that the forces on the snowball must be unbalanced.

You might be interested in
In which situation is maximum work considered to be done by a force?
umka2103 [35]

Answer:

A) When the angle between the Force (F) and Displacement (x) is 0°, because, Work done (W) is directly proportional to the Cosine of the Angle between the Force applied and the resultant displacement of the subject.

W = F•x cos ∅

If ∅ = 0°,

W = F•x ===> Maximum Work Done.

If ∅ = 45°,

W = F•x/√2

If ∅ = 90°,

W = 0

If ∅ = 180°,

W = –F•x ===> Minimum Work Done.

7 0
3 years ago
Two arrows are shot vertically upward. the second arrow is shot after the first one, but while the first is still on its way up.
Neko [114]
<span>Now that you know the time to reach its maximum height, you have enough information to find out the initial velocity of the second arrow. Here's what you know about it: its final velocity is 0 m/s (at the maximum height), its time to reach that is 2.8 seconds, but wait! it was fired 1.05 seconds later, so take off 1.05 seconds so that its time is 1.75 seconds, and of course gravity is still the same at -9.8 m/s^2. Plug those numbers into the kinematic equation (Vf=Vi+a*t, remember?) for 0=Vi+-9.8*1.75 and solve for Vi to get....... 17.15 m/s</span>
7 0
3 years ago
A force in the +x -direction with magnitude F(x)=18.0N−(0.530N/m)x is applied to a 7.90 kg box that is sitting on the horizontal
dsp73

Answer:

v\approx 8.570\,\frac{m}{s}

Explanation:

The equation of equlibrium for the box is:

\Sigma F_{x} = 18\,N-(0.530\,\frac{N}{m} )\cdot x = (7.90\,kg)\cdot a

The formula for the acceleration, given in \frac{m}{s^{2}}, is:

a = \frac{18\,N-(0.530\,\frac{N}{m} )\cdot x}{7.90\,kg}

Velocity can be derived from the following definition of acceleration:

a = v\cdot \frac{dv}{dx}

v\, dv = a\, dx

\frac{1}{2}\cdot v^{2} = \int\limits^{17\,m}_{0\,m} {\frac{18\,N-(0.530\,\frac{N}{m} )\cdot x}{7.90\,kg} } \, dx

\frac{1}{2}\cdot v^{2} =\frac{18\,N}{7.90\,kg}  \int\limits^{17\,m}_{0\,m}\, dx  - \frac{0.530\,\frac{N}{m} }{7.90\,kg} \int\limits^{17\,m}_{0\,m} {x} \, dx

\frac{1}{2}\cdot v^{2} = (2.278\,\frac{m}{s^{2}})\cdot x |_{0\,m}^{27\,m}-(0.034\,\frac{1}{s^{2}})\cdot x^{2}|_{0\,m}^{27\,m}

v =\sqrt{2\cdot[(2.278\,\frac{m}{s^{2}})\cdot x |_{0\,m}^{27\,m}-(0.034\,\frac{1}{s^{2}})\cdot x^{2}|_{0\,m}^{27\,m}]  }

The speed after the box has travelled 17 meters is:

v\approx 8.570\,\frac{m}{s}

3 0
3 years ago
4.5 billion km, the average separation between the sun and Neptune (report answer in hours). How long does it take light to trav
Liula [17]

Answer:

t = 4.17 hours

Explanation:

given,

The distance between Sun and Neptune, d = 4.5 billion Km

                                                                         = 4.5 x 10⁹ Km

                                                                          = 4.5 x 10¹¹ m

The velocity of light, c = 3 x 10⁸ m/s

The velocity is always equal to displacement by the time.

                                           <em>V = d / t    m/s</em>

∴                                           t = d / V

                                               = 4.5 x 10¹¹ m / 3 x 10⁸ m/s

                                               = 15,000 s

                                               = 4.17 h

Hence, the time taken by the light rays to reach the Neptune is, t = 4.17 h

4 0
3 years ago
How many degrees are in each quadrant <br> A: 90°<br> B: 30°<br> C: 180°<br> D: 360°
Airida [17]

In one quadrant there are 90 degrees.

8 0
3 years ago
Other questions:
  • Which of the following exists around every object that has mass?
    7·2 answers
  • What happens if an opaque object is placed in the path of light?
    15·2 answers
  • What must happen for liquid water to become water vapor?
    8·2 answers
  • A trapeze artist swings in simple harmonic motion with a period of 3.8 s.
    11·1 answer
  • Try to move the magnet back and forth between the two coils. Explain the motion of the magnet and what might be causing this.
    8·1 answer
  • What is the speed of sound in solid? <br>​
    11·2 answers
  • Plz help, its an emergency, giving lots of points for it. and srry if its in the wrong subject, not really sure? I just don't un
    13·2 answers
  • How do electromagnetic waves travel through a vacuum?​
    5·1 answer
  • How can spectroscopy and infrared technology be useful in space? (5 points)
    7·1 answer
  • Two difference between thrust and upthrust .
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!