<span>ultraviolet
Have a great day!</span>
Set this up as a proportion.
.002 m^3/20 degrees = x/50 degrees
solve for x
x = .005 m^3
If you found this helpful, please brainliest me!
Answer:
Electrical force, F = 90 N
Explanation:
It is given that,
Charge on sphere 1, 
Charge on sphere 2, 
Distance between two spheres, d = 6 cm = 0.06 m
Let F is the electrical force between them. It is given by the formula of electric force which is directly proportional to the product of charges and inversely proportional to the square of distance between them such that,


F = 90 N
So, the electrical force between them is 90 N. Hence, this is the required solution.
Answer:
c = 1163.34 J/kg.°C
Explanation:
Specific heat capacity:
"Specific heat capacity is the amount of heat energy required to raise the temperature of a substance per unit of mass. The specific heat capacity of a material is a physical property."
Use this equation:
mcΔT = ( mw c + mAl cAl ) ΔT'
Rearranging the equation to find the specific heat (c) you get this:
c = (( mw c + mAl cAl ) ΔT') / (mΔT)
c = (( 0.285 (4186) + (0.15)(900)) (32 -25.1)) / ((0.125) (95 - 32))
c = 1163.34 J/kg.°C
A) the forces are acting in the same direction.. B) Together, forces are acting in opposite directions
Answer:
A) 80 N
B) 20 N
Explanation:
A) If the forces acting are in the same direction, then the net force will be a sum of both so many faces..
Thus;
ΣF = 50 + 30
ΣF = 80 N
B) If the forces are acting in the in opposite directions with the larger force pointing in the positive y-axis then, the net force is;
ΣF = 50 - 30
ΣF = 20 N